scholarly journals Study for Performance Increase of a Extractor Device by Steel Replacement of AISI 304 Steel for AISI 420 Steel

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 280
Author(s):  
Francisco Alves de Lima Júnior ◽  
Ricardo Artur Sanguinetti Ferreira ◽  
Rômulo Rocha de Araújo Lima

The performance of an extractor device used in the food industry was studied from the development of structural analysis through computational modeling based on finite elements. These analyses considered the mechanical properties of AISI 304 and 420 stainless steels, in addition to the tribological aspects of the device in operation. Initially, uniaxial tensile tests were carried out according to the ABNT NBR 6892 standard and hardness tests were carried out according to ASTM E384, E92, and E18 standards. From the mechanical tests, structural analyses were carried out numerically on each of the components of the extractor device. After analyzing all the components, the device was assembled to be tested in operation. The wear and service life of devices made from these two materials were evaluated. From this study, it could be concluded that the extractor device made with AISI 420 stainless steel, in addition to having a lower manufacturing cost, suffered less wear and had an increase in service life of up to 650% compared to the extractor device made with steel stainless steel AISI 304.

2018 ◽  
Vol 5 (5) ◽  
pp. 13321-13333 ◽  
Author(s):  
A.P. Junaidh ◽  
G. Yuvaraj ◽  
Josephine Peter ◽  
V Bhuvaneshwari ◽  
Kanagasabapathi ◽  
...  

2020 ◽  
Vol 315 ◽  
pp. 113675 ◽  
Author(s):  
Marta Pakiet ◽  
Iwona Kowalczyk ◽  
Rafael Leiva Garcia ◽  
Robert Akid ◽  
Bogumił Brycki

2014 ◽  
Vol 975 ◽  
pp. 149-153 ◽  
Author(s):  
Lorenço Neckel Jr. ◽  
Arthur G. Weiss ◽  
Günter Motz ◽  
Dachamir Hotza ◽  
Márcio C. Fredel

Coatings of polysilazane-based ceramics are a promising technology for the protection of steels for applications at high temperatures and chemically harsh environments where, currently, special and expensive grades of steel are used for. To this work, the polymer-ceramic transformation behavior of VL-20 polysilazane precursor and 8%YSZ and glassceramic powders as fillers, and their variables were evaluated, and the coatings on stainless steel AISI 304 substrates were characterized. The first obtained coatings showed good adherence, but also high porosity.


2013 ◽  
Vol 845 ◽  
pp. 765-769 ◽  
Author(s):  
Guilherme Cortelini Rosa ◽  
André J. Souza ◽  
Flávio J. Lorini

Machining performance consists to associate the optimal process and cutting parameters and maximum material removal rate with the most appropriate tool while controlling the machined surface state. This work verifies the influence of standard and wiper cutting tools on generated surface roughness and residual stress in dry finish turning operation of the martensitic stainless steel AISI 420 in a comparative way. Tests are conducted for different combinations of tool nose geometry, feed rate and depth of cut being analyzed through the Design of Experiments regarding to surface roughness parametersRaandRt. Moreover, the formation of residual stresses in the material (using the technique of X-Ray Diffraction) was evaluated after the machining process for these two cutting geometries and thereafter the result was compared between them. An ANOVA is performed to clarify the influence of cutting parameters on generated surface roughness, which outputs inform that cutting tool geometry is the most influent onRaandRt. It is concluded that analyzed wiper inserts present low performance for low feed rates. Regarding the analysis of the residual stresses it can be stated that for standard and wiper tools the values collected show that for finish turning the compression stresses were found. It can be observed that the greatest amount of compressive stress has been found for the standard tool.


Sign in / Sign up

Export Citation Format

Share Document