scholarly journals Particle-Based Numerical Simulation Study of Solid Particle Erosion of Ductile Materials Leading to an Erosion Model, Including the Particle Shape Effect

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 286
Author(s):  
Shoya Mohseni-Mofidi ◽  
Eric Drescher ◽  
Harald Kruggel-Emden ◽  
Matthias Teschner ◽  
Claas Bierwisch

Solid particle erosion inevitably occurs if a gas–solid or liquid–solid mixture is in contact with a surface, e.g., in pneumatic conveyors. Having a good understanding of this complex phenomenon enables one to reduce the maintenance costs in several industrial applications by designing components that have longer lifetimes. In this paper, we propose a methodology to numerically investigate erosion behavior of ductile materials. We employ smoothed particle hydrodynamics that can easily deal with large deformations and fractures as a truly meshless method. In addition, a new contact model was developed in order to robustly handle contacts around sharp corners of the solid particles. The numerical predictions of erosion are compared with experiments for stainless steel AISI 304, showing that we are able to properly predict the erosion behavior as a function of impact angle. We present a powerful tool to conveniently study the effect of important parameters, such as solid particle shapes, which are not simple to study in experiments. Using the methodology, we study the effect of a solid particle shape and conclude that, in addition to angularity, aspect ratio also plays an important role by increasing the probability of the solid particles to rotate after impact. Finally, we are able to extend a widely used erosion model by a term that considers a solid particle shape.

2019 ◽  
Vol 71 (2) ◽  
pp. 242-252 ◽  
Author(s):  
Vineet Shibe ◽  
Vikas Chawla

PurposeThis paper aims to perform the solid particle erosion studies in simulated coal-fired boiler conditions with a view to compare the erosion behavior of two different types of detonation gun (D-Gun) sprayed cermet coating powders, that is, WC-12%Co and Cr3C2-25%NiCr on ASTM A36 steel and bare (uncoated) ASTM A36 steel.Design/methodology/approachErosion studies were performed using an air jet erosion test rig at impingement angles of 45°, 60° and 90°. During the erosion studies weight loss, erosion rates in terms of volume loss (mm3/g) and measurement of erosion profiles were determined using optical profilometer.FindingsBoth cermet coatings had successfully protected the ASTM A36 steel from erosion at impingement angles of 45°, 60° and 90°. In the case of bare ASTM A36 steel, the erosion rates were maximal at an impingement angle of 45° and minimal at an impingement angle of 90°, thus depicting the peculiar erosion behavior of ductile materials. WC-12%Co coated specimens exhibited erosion behavior that is closer to the behavior of ductile materials. Cr3C2-25%NiCr coated specimens exhibited the maximum erosion rate at an impingement angle of 90° and minimum at an impingement angle of 45°, hence depicting the typical behavior of brittle materials.Practical implicationsIt is expected that these results will contribute to the improvement of erosion resistance of induced draft fans, by the application of D-Gun sprayed WC-12%Co and Cr3C2-25%NiCr cermet coatings.Originality/valueThis paper evaluates the solid particle erosion behavior of bare and cermet-coated ASTM A36 steel which will be helpful in choosing the suitable cermet coating for induced draft fan applications.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 921
Author(s):  
Alicja Krella

Due to the increasing maintenance costs of hydraulic machines related to the damages caused by cavitation erosion and/or erosion of solid particles, as well as in tribological connections, surface protection of these components is very important. Up to now, numerous investigations of resistance of coatings, mainly nitride coatings, such as CrN, TiN, TiCN, (Ti,Cr)N coatings and multilayer TiN/Ti, ZrN/CrN and TN/(Ti,Al)N coatings, produced by physical vapor deposition (PVD) method using different techniques of deposition, such as magnetron sputtering, arc evaporation or ion plating, to cavitation erosion, solid particle erosion and wear have been made. The results of these investigations, degradation processes and main test devices used are presented in this paper. An effect of deposition of mono- and multi-layer PVD coatings on duration of incubation period, cumulative weight loss and erosion rate, as well as on wear rate and coefficient of friction in tribological tests is discussed. It is shown that PVD coating does not always provide extended incubation time and/or improved resistance to mentioned types of damage. The influence of structure, hardness, residence to plastic deformation and stresses in the coatings on erosion and wear resistance is discussed. In the case of cavitation erosion and solid particle erosion, a limit value of the ratio of hardness (H) to Young’s modulus (E) exists at which the best resistance is gained. In the case of tribological tests, the higher the H/E ratio and the lower the coefficient of friction, the lower the wear rate, but there are also many exceptions.


Author(s):  
Bijan Mohammadi ◽  
AmirSajjad Khoddami

Solid particle erosion is one of the main failure mechanisms of a compressor blade. Thus, characterization of this damage mode is very important in life assessment of the compressor. Since experimental study of solid particle erosion needs special methods and equipment, it is necessary to develop erosion computer models. This study presents a coupled temperature–displacement finite element model to investigate damage of a compressor blade due to multiple solid particles erosion. To decrease the computational cost, a representative volume element technique is introduced to simulate simultaneous impact of multiple particles. Blade has been made of Ti-6Al-4V, a ductile titanium-based alloy, which is impacted by alumina particles. Erosion finite element modeling is assumed as a micro-scale impact problem and Johnson–Cook constitutive equations are used to describe Ti-6Al-4V erosive behavior. In regard to a wide variation range in thermal conditions all over the compressor, it is divided into three parts (first stages, middle stages, and last stages) in which each part has an average temperature. Effective parameters on erosive behavior of the blade alloy, such as impact angle, particles velocity, and particles size are studied in these three temperatures. Results show that middle stages are the most critical sites of the compressor in terms of erosion damage. An exponential relation is observed between erosion rate and particles velocity. The dependency of erosion rate on size of particles at high temperatures is indispensable.


Sign in / Sign up

Export Citation Format

Share Document