scholarly journals Finite-Time Output Feedback Control for Electro-Hydraulic Servo Systems with Parameter Adaptation

Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 214
Author(s):  
Luyue Yin ◽  
Wenxiang Deng ◽  
Xiaowei Yang ◽  
Jianyong Yao

Measurement noise, parametric uncertainties, and external disturbances broadly exist in electro-hydraulic servo systems, which terribly deteriorate the system control performance. To figure out this problem, a novel finite-time output feedback controller with parameter adaptation is proposed for electro-hydraulic servo systems in this paper. First, to avoid using noise-polluted signals and attain active disturbance compensation, a finite-time state observer is adopted to estimate unknown system states and disturbances, which attenuates the impact of measurement noise and external disturbances on tracking performance. Second, by adopting a parameter adaptive law, the parametric uncertainties in the electro-hydraulic servo system can be much lessened, which is beneficial to averting the high-gain feedback in practice. Then, integrating the backstepping framework and the super-twisting sliding mode technique, a synthesized output feedback controller is constructed to achieve high-accuracy tracking performance for electro-hydraulic servo systems. Lyapunov stability analysis demonstrates that the proposed control scheme can acquire finite-time stability. The excellent tracking performance of the designed control law is verified by comparative simulation results.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Jianyong Yao ◽  
Guichao Yang ◽  
Dawei Ma

The integration of internal leakage fault detection and tolerant control for single-rod hydraulic actuators is present in this paper. Fault detection is a potential technique to provide efficient condition monitoring and/or preventive maintenance, and fault tolerant control is a critical method to improve the safety and reliability of hydraulic servo systems. Based on quadratic Lyapunov functions, a performance-oriented fault detection method is proposed, which has a simple structure and is prone to implement in practice. The main feature is that, when a prescribed performance index is satisfied (even a slight fault has occurred), there is no fault alarmed; otherwise (i.e., a severe fault has occurred), the fault is detected and then a fault tolerant controller is activated. The proposed tolerant controller, which is based on the parameter adaptive methodology, is also prone to realize, and the learning mechanism is simple since only the internal leakage is considered in parameter adaptation and thus the persistent exciting (PE) condition is easily satisfied. After the activation of the fault tolerant controller, the control performance is gradually recovered. Simulation results on a hydraulic servo system with both abrupt and incipient internal leakage fault demonstrate the effectiveness of the proposed fault detection and tolerant control method.


Author(s):  
Qijia Yao

Space manipulator is considered as one of the most promising technologies for future space activities owing to its important role in various on-orbit serving missions. In this study, a robust finite-time tracking control method is proposed for the rapid and accurate trajectory tracking control of an attitude-controlled free-flying space manipulator in the presence of parametric uncertainties and external disturbances. First, a baseline finite-time tracking controller is designed to track the desired position of the space manipulator based on the homogeneous method. Then, a finite-time disturbance observer is designed to accurately estimate the lumped uncertainties. Finally, a robust finite-time tracking controller is developed by integrating the baseline finite-time tracking controller with the finite-time disturbance observer. Rigorous theoretical analysis for the global finite-time stability of the whole closed-loop system is provided. The proposed robust finite-time tracking controller has a relatively simple structure and can guarantee the position and velocity tracking errors converge to zero in finite time even subject to lumped uncertainties. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance under the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.


2018 ◽  
Vol 40 (14) ◽  
pp. 4078-4088
Author(s):  
Chao Liang ◽  
Chenxiao Cai ◽  
Jing Xu

The paper mainly deals with the problem of finite-time stabilization of linear time-varying systems. A dynamic output feedback controller is designed, which is able to stabilize the linear time-varying systems in finite time. By virtue of extended piecewise constant method, novel criteria for the existence of a dynamic output feedback controller is established in terms of linear matrix inequalities. Compared with the existing method, the proposed method is more efficient from a computational point of view. A simulation is given to illustrate the effectiveness of the obtained result.


2020 ◽  
Vol 10 (18) ◽  
pp. 6447
Author(s):  
Mingyu Fu ◽  
Lulu Wang

This paper develops a finite-time path following control scheme for an underactuated marine surface vessel (MSV) with external disturbances, model parametric uncertainties, position constraint and input saturation. Initially, based on the time-varying barrier Lyapunov function (BLF), the finite-time line-of-sight (FT-LOS) guidance law is proposed to obtain the desired yaw angle and simultaneously constrain the position error of the underactuated MSV. Furthermore, the finite-time path following constraint controllers are designed to achieve tracking control in finite time. Additionally, considering the model parametric uncertainties and external disturbances, the finite-time disturbance observers are proposed to estimate the compound disturbance. For the sake of avoiding the input saturation and satisfying the requirements of finite-time convergence, the finite-time input saturation compensators were designed. The stability analysis shows that the proposed finite-time path following control scheme can strictly guarantee the constraint requirements of the position, and all error signals of the whole control system can converge into a small neighborhood around zero in finite time. Finally, comparative simulation results show the effectiveness and superiority of the proposed finite-time path following control scheme.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Cong-Trang Nguyen ◽  
Yao-Wen Tsai

This study proposes a novel variable structure control (VSC) for the mismatched uncertain systems with unknown time-varying delay. The novel VSC includes the finite-time convergence sliding mode, invariance property, asymptotic stability, and measured output only. A necessary and sufficient condition guaranteeing the existence of sliding surface is given. A novel lemma is established to deal with the control design problem for a wider class of time-delay systems. A suitable reduced-order observer (ROO) is constructed to estimate unmeasured state variables of the systems. A novel finite-time output feedback controller (FTOFC) is investigated, which is based on the ROO tool and the Moore-Penrose inverse technique. Moreover, with the help of this lemma and the proposed FTOFC, restrictions on most existing works are also eliminated. In addition, an asymptotic stability analysis is implemented by means of the feasibility of the linear matrix inequalities (LMIs) and given desirable sliding mode dynamics. Finally, a MATLAB simulation result on a numerical example is performed to show the effectiveness and advantage of the proposed method.


2013 ◽  
Vol 300-301 ◽  
pp. 1209-1213
Author(s):  
Jian Shan Lu ◽  
Chang Ming Wang ◽  
Ai Jun Zhang ◽  
Xiang Fei Meng

In order to reduce the influence of frictional interference and measurement noise on stabilized platform tracking performance, disturbance observer (DOB) is applied to platform servo system. In view of the non-ideal performance of classical disturbance observer about suppressing measurement noise, a novel improved DOB which uses an additional control signal to compensate system outputs is proposed based on the structure of classical DOB, and robust stability of the improved DOB when existing model perturbation is analyzed in detail. Simulation results show that the improved DOB can suppress external disturbances and model perturbation well, and the suppression performance of measurement noise is improved, too.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ling Hou ◽  
Dongyan Chen

This paper investigates the stochastic finite-time H∞ boundedness problem for nonlinear discrete time networked systems with randomly occurring multi-distributed delays and missing measurements. The randomly occurring multi-distributed delays and missing measurements are described as Bernoulli distributed white noise sequence. The goal of this paper is to design a full-order output-feedback controller to guarantee that the corresponding closed-loop system is stochastic finite-time H∞ bounded and with desired H∞ performance. By constructing a new Lyapunov-Krasovskii functional, sufficient conditions for the existence of output-feedback are established. The desired full-order output-feedback controller is designed in terms of the solution to linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the validity of the designed method.


Sign in / Sign up

Export Citation Format

Share Document