scholarly journals Inter- and Intra-Hydrogen Bonding Strategy to Control the Fluorescence of Acylhydrazone-Based Conjugated Microporous Polymers and Their Application to Nitroaromatics Detection

Macromol ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 234-242
Author(s):  
Inhwan Cha ◽  
Seohyun Baek ◽  
Sun Gu Song ◽  
Junggong Kim ◽  
Ho Keun Lee ◽  
...  

Acylhydrazone-based fluorescent conjugated microporous polymers (CMPs) with inter-and intra-hydrogen bonding-controlled emissive properties were prepared. The synthesized CMPs (BH-CMP and ABH-CMP) were characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, solid-state 13C cross polarization/magic angle spinning nuclear magnetic resonance spectroscopy, and photoluminescence spectroscopy. Interestingly, BH-CMP exhibited emission enhancement via adsorption of water molecules, whereas the emission of ABH-CMP, which possesses free amine groups, decreased upon the addition of water molecules. The differences in the emission trends of BH-CMP and ABH-CMP in the presence of water molecules originate from the formation of different hydrogen-bonding networks in each CMP. The acylhydrazone-based CMPs were applied to the detection of nitroaromatic compounds. As a result, ABH-CMP in DMF exhibited high selectivity for 1,3,5-trinitrotoluene (TNT) over other nitroaromatic compounds nitrobenzene, 1-chloro-4-nitrobenzene, 2,3-dichloronitrobenzene, and 2,4-dinitrotoluene.

2021 ◽  
Vol 2 (1) ◽  
pp. 39-48
Author(s):  
Nguyen H. H. Phuc ◽  
Takaki Maeda ◽  
Tokoharu Yamamoto ◽  
Hiroyuki Muto ◽  
Atsunori Matsuda

A solid solution of a 100Li3PS4·xLi3PO4 solid electrolyte was easily prepared by liquid-phase synthesis. Instead of the conventional solid-state synthesis methods, ethyl propionate was used as the reaction medium. The initial stage of the reaction among Li2S, P2S5 and Li3PO4 was proved by ultraviolet-visible spectroscopy. The powder X-ray diffraction (XRD) results showed that the solid solution was formed up to x = 6. At x = 20, XRD peaks of Li3PO4 were detected in the prepared sample after heat treatment at 170 °C. However, the samples obtained at room temperature showed no evidence of Li3PO4 remaining for x = 20. Solid phosphorus-31 magic angle spinning nuclear magnetic resonance spectroscopy results proved the formation of a POS33− unit in the sample with x = 6. Improvements of ionic conductivity at room temperature and activation energy were obtained with the formation of the solid solution. The sample with x = 6 exhibited a better stability against Li metal than that with x = 0. The all-solid-state half-cell employing the sample with x = 6 at the positive electrode exhibited a better charge–discharge capacity than that employing the sample with x = 0.


1998 ◽  
Vol 62 (2) ◽  
pp. 165-178 ◽  
Author(s):  
C. M. B. Henderson ◽  
A. M. T. Bell ◽  
S. C. Kohn ◽  
C. S. Page

AbstractThe structure of a synthetic end-member wairakite (CaAl2Si4O12·2H2O) has been determined using Rietveld analysis of high-resolution, synchrotron X-ray powder diffraction data, and 29Si and 27Al magic angle spinning nuclear magnetic resonance spectroscopy. The framework in the synthetic sample is more disordered than that in natural wairakite. Ca is distributed over the cavity cation sites M2, M12A, M12B in the approximate proportions 0.8:0.1:0.1, respectively, with M11 being vacant. 29Si MAS NMR data are consistent with about 80% of the Si occupying tetrahedral T11 and T12 sites linked to two Al atoms [Q4(2Al) silicons]. Tetrahedral and cavity cation site disorder are coupled so that Al mainly occupies T2 sites, with Ca in M12A and M12B being balanced by Al in T12A and T12B; T11A and T11B sites appear to only contain Si, in agreement with the M11 site being vacant. The crystal chemistries of the wide range of stoichiometries which crystallize with the leucite/pollucite structure-type are also reviewed, with particular attention being paid to the tetrahedral ordering configurations present in these phases, and the implications to crystallographic phase transitions.


Sign in / Sign up

Export Citation Format

Share Document