scholarly journals Explicit Solutions and Bifurcations for a System of Rational Difference Equations

Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 69
Author(s):  
Bashir Al-Hdaibat ◽  
Saleem Al-Ashhab ◽  
Ramadan Sabra

In this paper, we consider the explicit solution of the following system of nonlinear rational difference equations: x n + 1 = x n - 1 / x n - 1 + r , y n + 1 = x n - 1 y n / x n - 1 y n + r , with initial conditions x - 1 , x 0 and y 0 , which are arbitrary positive real numbers. By doing this, we encounter the hypergeometric function. We also investigate global dynamics of this system. The global dynamics of this system consists of two kind of bifurcations.


2019 ◽  
Vol 69 (1) ◽  
pp. 147-158 ◽  
Author(s):  
R. Abo-Zeid

Abstract In this paper, we determine the forbidden sets, introduce an explicit formula for the solutions and discuss the global behaviors of solutions of the difference equations $$\begin{array}{} \displaystyle x_{n+1}=\frac{ax_{n}x_{n-1}}{bx_{n-1}+ cx_{n-2}},\quad n=0,1,\ldots \end{array} $$ where a,b,c are positive real numbers and the initial conditions x−2,x−1,x0 are real numbers.



2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
A. M. Alotaibi ◽  
M. S. M. Noorani ◽  
M. A. El-Moneam

The structure of the solutions for the system nonlinear difference equations xn+1=ynyn-2/(xn-1+yn-2), yn+1=xnxn-2/(±yn-1±xn-2), n=0,1,…, is clarified in which the initial conditions x-2, x-1, x0, y-2, y-1, y0 are considered as arbitrary positive real numbers. To exemplify the theoretical discussion, some numerical examples are presented.



2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Tran Hong Thai ◽  
Nguyen Anh Dai ◽  
Pham Tuan Anh

<p style='text-indent:20px;'>In this paper, we study the boundedness and persistence of positive solution, existence of invariant rectangle, local and global behavior, and rate of convergence of positive solutions of the following systems of exponential difference equations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} x_{n+1} = \dfrac{\alpha_1+\beta_1e^{-x_{n-1}}}{\gamma_1+y_n},\ y_{n+1} = \dfrac{\alpha_2+\beta_2e^{-y_{n-1}}}{\gamma_2+x_n},\\ x_{n+1} = \dfrac{\alpha_1+\beta_1e^{-y_{n-1}}}{\gamma_1+x_n},\ y_{n+1} = \dfrac{\alpha_2+\beta_2e^{-x_{n-1}}}{\gamma_2+y_n}, \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where the parameters <inline-formula><tex-math id="M1">\begin{document}$ \alpha_i,\ \beta_i,\ \gamma_i $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M2">\begin{document}$ i \in \{1,2\} $\end{document}</tex-math></inline-formula> and the initial conditions <inline-formula><tex-math id="M3">\begin{document}$ x_{-1}, x_0, y_{-1}, y_0 $\end{document}</tex-math></inline-formula> are positive real numbers. Some numerical example are given to illustrate our theoretical results.</p>



2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Dağistan Simsek ◽  
Bilal Demir ◽  
Cengiz Cinar

We study the behavior of the solutions of the following system of difference equationsxn+1=max⁡{A/xn,yn/xn},yn+1=max⁡{A/yn,xn/yn}where the constantAand the initial conditions are positive real numbers.



Author(s):  
Abdualrazaq Sanbo ◽  
Elsayed M. Elsayed ◽  
Faris Alzahrani

This paper is devoted to find the form of the solutions of a rational difference equations with arbitrary positive real initial conditions. Specific form of the solutions of two special cases of this equation are given.



Author(s):  
Ibtissam Talha ◽  
Salim Badidja

In this paper, we deal with the periodicity of solutions of the following general system rational of difference equations: [Formula: see text] where [Formula: see text] [Formula: see text] and the initial conditions are arbitrary nonzero real numbers.



Fractals ◽  
2020 ◽  
Vol 28 (06) ◽  
pp. 2050118
Author(s):  
ABDUL KHALIQ ◽  
MUHAMMAD ZUBAIR ◽  
A. Q. KHAN

In this paper, we study the boundedness character and persistence, local and global behavior, and rate of convergence of positive solutions of following system of rational difference equations [Formula: see text] wherein the parameters [Formula: see text] for [Formula: see text] and the initial conditions [Formula: see text] are positive real numbers. Some numerical examples are given to verify our theoretical results.



2019 ◽  
Vol 16 ◽  
pp. 8247-8261
Author(s):  
Elsayed M. Elsayed ◽  
Faris Alzahrani ◽  
Ibrahim Abbas ◽  
N. H. Alotaibi

In this article, analysis and investigation have been conducted on the periodic nature as well as the type of the solutions of the subsequent schemes of rational difference equations with a nonzero real numbers initial conditions.



2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Qi Wang ◽  
Qinqin Zhang ◽  
Qirui Li

Consider the following system of difference equations:xn+1(i)=xn-m+1(i)/Ai∏j=0m-1xn-j(i+j+1)+αi,xn+1(i+m)=xn+1(i),x1-l(i+l)=ai,l,Ai+m=Ai,αi+m=αi,i,l=1,2,…,m;n=0,1,2,…,wheremis a positive integer,Ai,αi,i=1,2,…,m, and the initial conditionsai,l,i,l=1,2,…,m,are positive real numbers. We obtain the expressions of the positive solutions of the system and then give a precise description of the convergence of the positive solutions. Finally, we give some numerical results.



Author(s):  
Abdualrazaq Sanbo ◽  
Elsayed M. Elsayed

We study the qualitative behavior of a predator-prey model, where the carrying capacity of the predators environment is proportional to the number of prey. The considered system is given by the following rational difference equations: where the initial conditions x-2; x-1; x0; y-2; y-1; y0 are arbitrary positive real numbers. Also, we give specic form of the solutions of some special cases of this equation. Some numerical examples are given to verify our theoretical results.



Sign in / Sign up

Export Citation Format

Share Document