scholarly journals Hybrid Methods for a Countable Family of G-Nonexpansive Mappings in Hilbert Spaces Endowed with Graphs

Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 936 ◽  
Author(s):  
Suthep Suantai ◽  
Mana Donganont ◽  
Watcharaporn Cholamjiak

In this paper, we introduce the iterative scheme for finding a common fixed point of a countable family of G-nonexpansive mappings by the shrinking projection method which generalizes Takahashi Takeuchi and Kubota’s theorem in a Hilbert space with a directed graph. Simultaneously, we give examples and numerical results for supporting our main theorems and compare the rate of convergence of some examples under the same conditions.

2020 ◽  
Vol 16 (01) ◽  
pp. 89-103
Author(s):  
W. Cholamjiak ◽  
D. Yambangwai ◽  
H. Dutta ◽  
H. A. Hammad

In this paper, we introduce four new iterative schemes by modifying the CQ-method with Ishikawa and [Formula: see text]-iterations. The strong convergence theorems are given by the CQ-projection method with our modified iterations for obtaining a common fixed point of two [Formula: see text]-nonexpansive mappings in a Hilbert space with a directed graph. Finally, to compare the rate of convergence and support our main theorems, we give some numerical experiments.


2020 ◽  
Vol 9 (3) ◽  
pp. 681-690
Author(s):  
Khairul Saleh ◽  
Hafiz Fukhar-ud-din

Abstract In this work, we propose an iterative scheme to approach common fixed point(s) of a finite family of generalized multi-valued nonexpansive mappings in a CAT(0) space. We establish and prove convergence theorems for the algorithm. The results are new and interesting in the theory of $$CAT\left( 0\right) $$ C A T 0 spaces and are the analogues of corresponding ones in uniformly convex Banach spaces and Hilbert spaces.


2017 ◽  
Vol 12 (12) ◽  
pp. 6845-6851
Author(s):  
Inaam Mohammed Ali Hadi ◽  
Dr. salwa Salman Abd

In this paper, we give a type of iterative scheme for sequence of nonexpansive mappings and we study the strongly convergence of these schemes in real Hilbert space to common fixed point which is also a solution of a variational inequality. Also there are some consequent of this results in convex analysis


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Kasamsuk Ungchittrakool ◽  
Duangkamon Kumtaeng

We create some new ideas of mappings called quasi-strictf-pseudocontractions. Moreover, we also find the significant inequality related to such mappings and firmly nonexpansive mappings within the framework of Hilbert spaces. By using the ideas of metricf-projection, we propose an iterative shrinking metricf-projection method for finding a common fixed point of a quasi-strictf-pseudocontraction and a countable family of firmly nonexpansive mappings. In addition, we provide some applications of the main theorem to find a common solution of fixed point problems and generalized mixed equilibrium problems as well as other related results.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Rabian Wangkeeree ◽  
Pakkapon Preechasilp

We introduce the new iterative methods for finding a common solution set of monotone, Lipschitz-type continuous equilibrium problems and the set of fixed point of nonexpansive mappings which is a unique solution of some variational inequality. We prove the strong convergence theorems of such iterative scheme in a real Hilbert space. The main result extends various results existing in the current literature.


2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
Gendai Gu ◽  
Shenghua Wang ◽  
Yeol Je Cho

We introduce a new iterative scheme that converges strongly to a common fixed point of a countable family of nonexpansive mappings in a Hilbert space such that the common fixed point is a solution of a hierarchical fixed point problem. Our results extend the ones of Moudafi, Xu, Cianciaruso et al., and Yao et al.


2012 ◽  
Vol 2012 ◽  
pp. 1-27 ◽  
Author(s):  
Bin-Chao Deng ◽  
Tong Chen ◽  
Baogui Xin

Let{T}i=1NbeNquasi-nonexpansive mappings defined on a closed convex subsetCof a real Hilbert spaceH. Consider the problem of finding a common fixed point of these mappings and introduce the parallel and cyclic algorithms for solving this problem. We will prove the strong convergence of these algorithms.


2020 ◽  
Vol 36 (1) ◽  
pp. 27-34 ◽  
Author(s):  
VASILE BERINDE

In this paper, we prove convergence theorems for a fixed point iterative algorithm of Krasnoselskij-Mann typeassociated to the class of enriched nonexpansive mappings in Banach spaces. The results are direct generaliza-tions of the corresponding ones in [Berinde, V.,Approximating fixed points of enriched nonexpansive mappings byKrasnoselskij iteration in Hilbert spaces, Carpathian J. Math., 35 (2019), No. 3, 293–304.], from the setting of Hilbertspaces to Banach spaces, and also of some results in [Senter, H. F. and Dotson, Jr., W. G.,Approximating fixed pointsof nonexpansive mappings, Proc. Amer. Math. Soc.,44(1974), No. 2, 375–380.], [Browder, F. E., Petryshyn, W. V., Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197–228.], byconsidering enriched nonexpansive mappings instead of nonexpansive mappings. Many other related resultsin literature can be obtained as particular instances of our results.


Sign in / Sign up

Export Citation Format

Share Document