scholarly journals Interesting Explicit Expressions of Determinants and Inverse Matrices for Foeplitz and Loeplitz Matrices

Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 939
Author(s):  
Zhaolin Jiang ◽  
Weiping Wang ◽  
Yanpeng Zheng ◽  
Baishuai Zuo ◽  
Bei Niu

Foeplitz and Loeplitz matrices are Toeplitz matrices with entries being Fibonacci and Lucas numbers, respectively. In this paper, explicit expressions of determinants and inverse matrices of Foeplitz and Loeplitz matrices are studied. Specifically, the determinant of the n × n Foeplitz matrix is the ( n + 1 ) th Fibonacci number, while the inverse matrix of the n × n Foeplitz matrix is sparse and can be expressed by the nth and the ( n + 1 ) th Fibonacci number. Similarly, the determinant of the n × n Loeplitz matrix can be expressed by use of the ( n + 1 ) th Lucas number, and the inverse matrix of the n × n ( n > 3 ) Loeplitz matrix can be expressed by only seven elements with each element being the explicit expressions of Lucas numbers. Finally, several numerical examples are illustrated to show the effectiveness of our new theoretical results.


1990 ◽  
Vol 33 (1) ◽  
pp. 1-10 ◽  
Author(s):  
C. M. Campbell ◽  
E. F. Robertson ◽  
R. M. Thomas

In this paper, we investigate a class of 2-generator 2-relator groups G(n) related to the Fibonacci groups F(2,n), each of the groups in this new class also being defined by a single parameter n, though here n can take negative, as well as positive, values. If n is odd, we show that G(n) is a finite soluble group of derived length 2 (if n is coprime to 3) or 3 (otherwise), and order |2n(n + 2)gnf(n, 3)|, where fn is the Fibonacci number defined by f0=0,f1=1,fn+2=fn+fn+1 and gn is the Lucas number defined by g0 = 2, g1 = 1, gn+2 = gn + gn+1 for n≧0. On the other hand, if n is even then, with three exceptions, namely the cases n = 2,4 or –4, G(n) is infinite; the groups G(2), G(4) and G(–4) have orders 16, 240 and 80 respectively.



2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Zhaolin Jiang ◽  
Yanpeng Gong ◽  
Yun Gao

Circulant type matrices have become an important tool in solving differential equations. In this paper, we consider circulant type matrices, including the circulant and left circulant andg-circulant matrices with the sum and product of Fibonacci and Lucas numbers. Firstly, we discuss the invertibility of the circulant matrix and present the determinant and the inverse matrix by constructing the transformation matrices. Furthermore, the invertibility of the left circulant andg-circulant matrices is also discussed. We obtain the determinants and the inverse matrices of the left circulant andg-circulant matrices by utilizing the relation between left circulant, andg-circulant matrices and circulant matrix, respectively.



Author(s):  
Eugeniusz Barcz

The paper presents, among others, the golden number $\varphi$ as the limit of the quotient of neighboring terms of the Fibonacci and Fibonacci type sequence by means of a fixed point of a mapping of a certain interval with the help of Edelstein's theorem. To demonstrate the equality  , where $f_n$ is $n$-th Fibonacci number also the formula from Corollary \ref{cor1} has been applied. It was obtained using some relationships between Fibonacci and Lucas numbers, which were previously justified.



2021 ◽  
Vol 56 (2) ◽  
pp. 124-132
Author(s):  
P. Ray ◽  
K. Bhoi

In the present study we investigate all repdigits which are expressed as a difference of two Fibonacci or Lucas numbers. We show that if $F_{n}-F_{m}$ is a repdigit, where $F_{n}$ denotes the $n$-th Fibonacci number, then $(n,m)\in \{(7,3),(9,1),(9,2),(11,1),(11,2),$ $(11,9),(12,11),(15,10)\}.$ Further, if $L_{n}$ denotes the $n$-th Lucas number, then $L_{n}-L_{m}$ is a repdigit for $(n,m)\in\{(6,4),(7,4),(7,6),(8,2)\},$ where $n>m.$Namely, the only repdigits that can be expressed as difference of two Fibonacci numbers are $11,33,55,88$ and $555$; their representations are $11=F_{7}-F_{3},\33=F_{9}-F_{1}=F_{9}-F_{2},\55=F_{11}-F_{9}=F_{12}-F_{11},\88=F_{11}-F_{1}=F_{11}-F_{2},\555=F_{15}-F_{10}$ (Theorem 2). Similar result for difference of two Lucas numbers: The only repdigits that can be expressed as difference of two Lucas numbers are $11,22$ and $44;$ their representations are $11=L_{6}-L_{4}=L_{7}-L_{6},\ 22=L_{7}-L_{4},\4=L_{8}-L_{2}$ (Theorem 3).





2014 ◽  
Vol 59 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Diego Marques ◽  
Pavel Trojovský

Abstract Let Fn be the nth Fibonacci number and let Ln be the nth Lucas number. The order of appearance z(n) of a natural number n is defined as the smallest natural number k such that n divides Fk. For instance, z(Fn) = n = z(Ln)/2 for all n > 2. In this paper, among other things, we prove that for all positive integers n ≡ 0,8 (mod 12).



Author(s):  
Sven-Erik Ekström ◽  
Paris Vassalos

AbstractIt is known that the generating function f of a sequence of Toeplitz matrices {Tn(f)}n may not describe the asymptotic distribution of the eigenvalues of Tn(f) if f is not real. In this paper, we assume as a working hypothesis that, if the eigenvalues of Tn(f) are real for all n, then they admit an asymptotic expansion of the same type as considered in previous works, where the first function, called the eigenvalue symbol $\mathfrak {f}$ f , appearing in this expansion is real and describes the asymptotic distribution of the eigenvalues of Tn(f). This eigenvalue symbol $\mathfrak {f}$ f is in general not known in closed form. After validating this working hypothesis through a number of numerical experiments, we propose a matrix-less algorithm in order to approximate the eigenvalue distribution function $\mathfrak {f}$ f . The proposed algorithm, which opposed to previous versions, does not need any information about neither f nor $\mathfrak {f}$ f is tested on a wide range of numerical examples; in some cases, we are even able to find the analytical expression of $\mathfrak {f}$ f . Future research directions are outlined at the end of the paper.



2020 ◽  
Vol 70 (3) ◽  
pp. 641-656
Author(s):  
Amira Khelifa ◽  
Yacine Halim ◽  
Abderrahmane Bouchair ◽  
Massaoud Berkal

AbstractIn this paper we give some theoretical explanations related to the representation for the general solution of the system of the higher-order rational difference equations$$\begin{array}{} \displaystyle x_{n+1} = \dfrac{1+2y_{n-k}}{3+y_{n-k}},\qquad y_{n+1} = \dfrac{1+2z_{n-k}}{3+z_{n-k}},\qquad z_{n+1} = \dfrac{1+2x_{n-k}}{3+x_{n-k}}, \end{array}$$where n, k∈ ℕ0, the initial values x−k, x−k+1, …, x0, y−k, y−k+1, …, y0, z−k, z−k+1, …, z1 and z0 are arbitrary real numbers do not equal −3. This system can be solved in a closed-form and we will see that the solutions are expressed using the famous Fibonacci and Lucas numbers.



1989 ◽  
Vol 03 (14) ◽  
pp. 1071-1085 ◽  
Author(s):  
L. A. BURSILL ◽  
GEORGE RYAN ◽  
XUDONG FAN ◽  
J. L. ROUSE ◽  
JULIN PENG ◽  
...  

Observations of the sunflower Helianthus tuberosus reveal the occurrence of both Fibonacci and Lucas numbers of visible spirals (parastichies). This species is multi-headed, allowing a quantitative study of the relative abundance of these two types of phyllotaxis. The florets follow a spiral arrangement. It is remarkable that the Lucas series occurred, almost invariably, in the first-flowering heads of individual plants. The occurrence of left-and right-handed chirality was found to be random, within experimental error, using an appropriate chirality convention. Quantitative crystallographic studies allow the average growth law to be derived (r = alτ−1; θ = 2πl/(τ + 1), where a is a constant, l is the seed cell number and τ is the golden mean [Formula: see text]). They also reveal departures from classical theoretical models of phyllotaxis, taking the form of persistent oscillations in both divergence angle and radius. The experimental results are discussed in terms of a new theoretical model for the close-packing of growing discs. Finally, a basis for synthesis of (inorganic) spiral lattice structures is proposed.



Sign in / Sign up

Export Citation Format

Share Document