scholarly journals Higher-Order Derivative-Free Iterative Methods for Solving Nonlinear Equations and Their Basins of Attraction

Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1052 ◽  
Author(s):  
Jian Li ◽  
Xiaomeng Wang ◽  
Kalyanasundaram Madhu

Based on the Steffensen-type method, we develop fourth-, eighth-, and sixteenth-order algorithms for solving one-variable equations. The new methods are fourth-, eighth-, and sixteenth-order converging and require at each iteration three, four, and five function evaluations, respectively. Therefore, all these algorithms are optimal in the sense of Kung–Traub conjecture; the new schemes have an efficiency index of 1.587, 1.682, and 1.741, respectively. We have given convergence analyses of the proposed methods and also given comparisons with already established known schemes having the same convergence order, demonstrating the efficiency of the present techniques numerically. We also studied basins of attraction to demonstrate their dynamical behavior in the complex plane.

2021 ◽  
Vol 5 (1) ◽  
pp. 25
Author(s):  
Víctor Galilea ◽  
José M. Gutiérrez

The purpose of this work is to give a first approach to the dynamical behavior of Schröder’s method, a well-known iterative process for solving nonlinear equations. In this context, we consider equations defined in the complex plane. By using topological conjugations, we characterize the basins of attraction of Schröder’s method applied to polynomials with two roots and different multiplicities. Actually, we show that these basins are half-planes or circles, depending on the multiplicities of the roots. We conclude our study with a graphical gallery that allow us to compare the basins of attraction of Newton’s and Schröder’s method applied to some given polynomials.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fiza Zafar ◽  
Gulshan Bibi

We present a family of fourteenth-order convergent iterative methods for solving nonlinear equations involving a specific step which when combined with any two-step iterative method raises the convergence order by n+10, if n is the order of convergence of the two-step iterative method. This new class include four evaluations of function and one evaluation of the first derivative per iteration. Therefore, the efficiency index of this family is 141/5 =1.695218203. Several numerical examples are given to show that the new methods of this family are comparable with the existing methods.


2014 ◽  
Vol 11 (05) ◽  
pp. 1350078 ◽  
Author(s):  
XIAOFENG WANG ◽  
TIE ZHANG

In this paper, we present some three-point Newton-type iterative methods without memory for solving nonlinear equations by using undetermined coefficients method. The order of convergence of the new methods without memory is eight requiring the evaluations of three functions and one first-order derivative in per full iteration. Hence, the new methods are optimal according to Kung and Traubs conjecture. Based on the presented methods without memory, we present two families of Newton-type iterative methods with memory. Further accelerations of convergence speed are obtained by using a self-accelerating parameter. This self-accelerating parameter is calculated by the Hermite interpolating polynomial and is applied to improve the order of convergence of the Newton-type method. The corresponding R-order of convergence is increased from 8 to 9, [Formula: see text] and 10. The increase of convergence order is attained without any additional calculations so that the two families of the methods with memory possess a very high computational efficiency. Numerical examples are demonstrated to confirm theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Farahnaz Soleimani ◽  
Fazlollah Soleymani ◽  
Stanford Shateyi

First, we make the Jain's derivative-free method optimal and subsequently increase its efficiency index from 1.442 to 1.587. Then, a novel three-step computational family of iterative schemes for solving single variable nonlinear equations is given. The schemes are free from derivative calculation per full iteration. The optimal family is constructed by applying the weight function approach alongside an approximation for the first derivative of the function in the last step in which the first two steps are the optimized derivative-free form of Jain's method. The convergence rate of the proposed optimal method and the optimal family is studied. The efficiency index for each method of the family is 1.682. The superiority of the proposed contributions is illustrated by solving numerical examples and comparing them with some of the existing methods in the literature. In the end, we provide the basins of attraction for some methods to observe the beauty of iterative nonlinear solvers in providing fractals and also choose the best method in case of larger attraction basins.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
J. P. Jaiswal

It is attempted to present two derivative-free Steffensen-type methods with memory for solving nonlinear equations. By making use of a suitable self-accelerator parameter in the existing optimal fourth- and eighth-order without memory methods, the order of convergence has been increased without any extra function evaluation. Therefore, its efficiency index is also increased, which is the main contribution of this paper. The self-accelerator parameters are estimated using Newton’s interpolation. To show applicability of the proposed methods, some numerical illustrations are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Taher Lotfi ◽  
Tahereh Eftekhari

Based on Ostrowski's method, a new family of eighth-order iterative methods for solving nonlinear equations by using weight function methods is presented. Per iteration the new methods require three evaluations of the function and one evaluation of its first derivative. Therefore, this family of methods has the efficiency index which equals 1.682. Kung and Traub conjectured that a multipoint iteration without memory based on n evaluations could achieve optimal convergence order 2n−1. Thus, we provide a new class which agrees with the conjecture of Kung-Traub for n=4. Numerical comparisons are made to show the performance of the presented methods.


2012 ◽  
Vol 220-223 ◽  
pp. 2585-2588
Author(s):  
Zhong Yong Hu ◽  
Fang Liang ◽  
Lian Zhong Li ◽  
Rui Chen

In this paper, we present a modified sixth order convergent Newton-type method for solving nonlinear equations. It is free from second derivatives, and requires three evaluations of the functions and two evaluations of derivatives per iteration. Hence the efficiency index of the presented method is 1.43097 which is better than that of classical Newton’s method 1.41421. Several results are given to illustrate the advantage and efficiency the algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


Sign in / Sign up

Export Citation Format

Share Document