scholarly journals Multipoint Fractional Iterative Methods with (2α + 1)th-Order of Convergence for Solving Nonlinear Problems

Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 452
Author(s):  
Giro Candelario ◽  
Alicia Cordero ◽  
Juan R. Torregrosa

In the recent literature, some fractional one-point Newton-type methods have been proposed in order to find roots of nonlinear equations using fractional derivatives. In this paper, we introduce a new fractional Newton-type method with order of convergence α + 1 and compare it with the existing fractional Newton method with order 2 α . Moreover, we also introduce a multipoint fractional Traub-type method with order 2 α + 1 and compare its performance with that of its first step. Some numerical tests and analysis of the dependence on the initial estimations are made for each case, including a comparison with classical Newton ( α = 1 of the first step of the class) and classical Traub’s scheme ( α = 1 of fractional proposed multipoint method). In this comparison, some cases are found where classical Newton and Traub’s methods do not converge and the proposed methods do, among other advantages.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Santiago Artidiello ◽  
Alicia Cordero ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

We present two classes of iterative methods whose orders of convergence are four and five, respectively, for solving systems of nonlinear equations, by using the technique of weight functions in each step. Moreover, we show an extension to higher order, adding only one functional evaluation of the vectorial nonlinear function. We perform numerical tests to compare the proposed methods with other schemes in the literature and test their effectiveness on specific nonlinear problems. Moreover, some real basins of attraction are analyzed in order to check the relation between the order of convergence and the set of convergent starting points.


2014 ◽  
Vol 11 (05) ◽  
pp. 1350078 ◽  
Author(s):  
XIAOFENG WANG ◽  
TIE ZHANG

In this paper, we present some three-point Newton-type iterative methods without memory for solving nonlinear equations by using undetermined coefficients method. The order of convergence of the new methods without memory is eight requiring the evaluations of three functions and one first-order derivative in per full iteration. Hence, the new methods are optimal according to Kung and Traubs conjecture. Based on the presented methods without memory, we present two families of Newton-type iterative methods with memory. Further accelerations of convergence speed are obtained by using a self-accelerating parameter. This self-accelerating parameter is calculated by the Hermite interpolating polynomial and is applied to improve the order of convergence of the Newton-type method. The corresponding R-order of convergence is increased from 8 to 9, [Formula: see text] and 10. The increase of convergence order is attained without any additional calculations so that the two families of the methods with memory possess a very high computational efficiency. Numerical examples are demonstrated to confirm theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
S. Artidiello ◽  
A. Cordero ◽  
Juan R. Torregrosa ◽  
M. P. Vassileva

A class of optimal iterative methods for solving nonlinear equations is extended up to sixteenth-order of convergence. We design them by using the weight function technique, with functions of three variables. Some numerical tests are made in order to confirm the theoretical results and to compare the new methods with other known ones.


2018 ◽  
Vol 1 (2) ◽  
pp. 32-39
Author(s):  
Jivandhar Jnawali

Newton method is one of the most widely used numerical methods for solving nonlinear equations. McDougall and Wotherspoon [Appl. Math. Lett., 29 (2014), 20-25] modified this method in predictor-corrector form and get an order of convergence 1+√2. More on the PDF


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
F. Soleymani ◽  
M. Sharifi ◽  
S. Shateyi ◽  
F. Khaksar Haghani

A class of iterative methods without restriction on the computation of Fréchet derivatives including multisteps for solving systems of nonlinear equations is presented. By considering a frozen Jacobian, we provide a class ofm-step methods with order of convergencem+1. A new method named as Steffensen-Schulz scheme is also contributed. Numerical tests and comparisons with the existing methods are included.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


2019 ◽  
Vol 4 (2) ◽  
pp. 34
Author(s):  
Deasy Wahyuni ◽  
Elisawati Elisawati

Newton method is one of the most frequently used methods to find solutions to the roots of nonlinear equations. Along with the development of science, Newton's method has undergone various modifications. One of them is the hasanov method and the newton method variant (vmn), with a higher order of convergence. In this journal focuses on the three-step iteration method in which the order of convergence is higher than the three methods. To find the convergence order of the three-step iteration method requires a program that can support the analytical results of both methods. One of them using the help of the matlab program. Which will then be compared with numerical simulations also using the matlab program.  Keywords : newton method, newton method variant, Hasanov Method and order of convergence


2014 ◽  
Vol 10 (2) ◽  
pp. 21-31
Author(s):  
Manoj Kumar

Abstract The aim of the present paper is to introduce and investigate a new Open type variant of Newton's method for solving nonlinear equations. The order of convergence of the proposed method is three. In addition to numerical tests verifying the theory, a comparison of the results for the proposed method and some of the existing ones have also been given.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fiza Zafar ◽  
Gulshan Bibi

We present a family of fourteenth-order convergent iterative methods for solving nonlinear equations involving a specific step which when combined with any two-step iterative method raises the convergence order by n+10, if n is the order of convergence of the two-step iterative method. This new class include four evaluations of function and one evaluation of the first derivative per iteration. Therefore, the efficiency index of this family is 141/5 =1.695218203. Several numerical examples are given to show that the new methods of this family are comparable with the existing methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Young Ik Kim ◽  
Young Hee Geum

We construct a biparametric family of fourth-order iterative methods to compute multiple roots of nonlinear equations. This method is verified to be optimally convergent. Various nonlinear equations confirm our proposed method with order of convergence of four and show that the computed asymptotic error constant agrees with the theoretical one.


Sign in / Sign up

Export Citation Format

Share Document