scholarly journals Interval Grey Prediction Models with Forecast Combination for Energy Demand Forecasting

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 960
Author(s):  
Peng Jiang ◽  
Yi-Chung Hu ◽  
Wenbao Wang ◽  
Hang Jiang ◽  
Geng Wu

Time series data for decision problems such as energy demand forecasting are often derived from uncertain assessments, and do not meet any statistical assumptions. The interval grey number becomes an appropriate representation for an uncertain and imprecise observation. In order to obtain nonlinear interval grey numbers with better forecasting accuracy, this study proposes a combined model by fusing interval grey numbers estimated by neural networks (NNs) and the grey prediction models. The proposed model first uses interval regression analysis using NNs to estimate interval grey numbers for a real valued sequence; and then a grey residual modification model is constructed using the upper and lower wrapping sequences obtained by NNs. It turns out that two different kinds of interval grey numbers can be estimated by nonlinear interval regression analysis. Forecasting accuracy on real data sequences was then examined by the best non-fuzzy performance values of the combined model. The proposed combined model performed well compared with the other interval grey prediction models considered.

Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 360-374
Author(s):  
Yuan Pei ◽  
Lei Zhenglin ◽  
Zeng Qinghui ◽  
Wu Yixiao ◽  
Lu Yanli ◽  
...  

Abstract The load of the showcase is a nonlinear and unstable time series data, and the traditional forecasting method is not applicable. Deep learning algorithms are introduced to predict the load of the showcase. Based on the CEEMD–IPSO–LSTM combination algorithm, this paper builds a refrigerated display cabinet load forecasting model. Compared with the forecast results of other models, it finally proves that the CEEMD–IPSO–LSTM model has the highest load forecasting accuracy, and the model’s determination coefficient is 0.9105, which is obviously excellent. Compared with other models, the model constructed in this paper can predict the load of showcases, which can provide a reference for energy saving and consumption reduction of display cabinet.


2020 ◽  
Vol 10 (7) ◽  
pp. 2322 ◽  
Author(s):  
Pedro Lara-Benítez ◽  
Manuel Carranza-García ◽  
José M. Luna-Romera ◽  
José C. Riquelme

Modern energy systems collect high volumes of data that can provide valuable information about energy consumption. Electric companies can now use historical data to make informed decisions on energy production by forecasting the expected demand. Many deep learning models have been proposed to deal with these types of time series forecasting problems. Deep neural networks, such as recurrent or convolutional, can automatically capture complex patterns in time series data and provide accurate predictions. In particular, Temporal Convolutional Networks (TCN) are a specialised architecture that has advantages over recurrent networks for forecasting tasks. TCNs are able to extract long-term patterns using dilated causal convolutions and residual blocks, and can also be more efficient in terms of computation time. In this work, we propose a TCN-based deep learning model to improve the predictive performance in energy demand forecasting. Two energy-related time series with data from Spain have been studied: the national electric demand and the power demand at charging stations for electric vehicles. An extensive experimental study has been conducted, involving more than 1900 models with different architectures and parametrisations. The TCN proposal outperforms the forecasting accuracy of Long Short-Term Memory (LSTM) recurrent networks, which are considered the state-of-the-art in the field.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2307
Author(s):  
Mohanad S. Al-Musaylh ◽  
Ravinesh C. Deo ◽  
Yan Li

To support regional electricity markets, accurate and reliable energy demand (G) forecast models are vital stratagems for stakeholders in this sector. An online sequential extreme learning machine (OS-ELM) model integrated with a maximum overlap discrete wavelet transform (MODWT) algorithm was developed using daily G data obtained from three regional campuses (i.e., Toowoomba, Ipswich, and Springfield) at the University of Southern Queensland, Australia. In training the objective and benchmark models, the partial autocorrelation function (PACF) was first employed to select the most significant lagged input variables that captured historical fluctuations in the G time-series data. To address the challenges of non-stationarities associated with the model development datasets, a MODWT technique was adopted to decompose the potential model inputs into their wavelet and scaling coefficients before executing the OS-ELM model. The MODWT-PACF-OS-ELM (MPOE) performance was tested and compared with the non-wavelet equivalent based on the PACF-OS-ELM (POE) model using a range of statistical metrics, including, but not limited to, the mean absolute percentage error (MAPE%). For all of the three datasets, a significantly greater accuracy was achieved with the MPOE model relative to the POE model resulting in an MAPE = 4.31% vs. MAPE = 11.31%, respectively, for the case of the Toowoomba dataset, and a similarly high performance for the other two campuses. Therefore, considering the high efficacy of the proposed methodology, the study claims that the OS-ELM model performance can be improved quite significantly by integrating the model with the MODWT algorithm.


Author(s):  
Pedro Lara-Benítez ◽  
Manuel Carranza-García ◽  
José M. Luna-Romera ◽  
José C. Riquelme

Modern energy systems collect high volumes of data that can provide valuable information about energy consumption. Electric companies can now use historical data to make informed decisions on energy production by forecasting the expected demand. Many deep learning models have been proposed to deal with these type of time series forecasting problems. Deep neural networks, such as recurrent or convolutional, can automatically capture complex patterns in time series data and provide accurate predictions. In particular, Temporal Convolutional Networks (TCN) are a specialised architecture that has advantages over recurrent networks for forecasting tasks. TCNs are able to extract long-term patterns using dilated causal convolutions and residual blocks, and can also be more efficient in terms of computation time. In this work, we propose a TCN-based deep learning model to improve the predictive performance in energy demand forecasting. Two energy-related time series with data from Spain have been studied: the national electric demand, and the power demand at charging stations for electric vehicles. An extensive experimental study has been conducted, involving more than 1900 models with different architectures and parametrisations. The TCN proposal outperforms the forecasting accuracy of Long Short-Term Memory (LSTM) recurrent networks, which are considered the state-of-the-art in the field.


Sign in / Sign up

Export Citation Format

Share Document