scholarly journals Developing Support Vector Machine with New Fuzzy Selection for the Infringement of a Patent Rights Problem

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1263
Author(s):  
Chih-Yao Chang ◽  
Kuo-Ping Lin

Classification problems are very important issues in real enterprises. In the patent infringement issue, accurate classification could help enterprises to understand court decisions to avoid patent infringement. However, the general classification method does not perform well in the patent infringement problem because there are too many complex variables. Therefore, this study attempts to develop a classification method, the support vector machine with new fuzzy selection (SVMFS), to judge the infringement of patent rights. The raw data are divided into training and testing sets. However, the data quality of the training set is not easy to evaluate. Effective data quality management requires a structural core that can support data operations. This study adopts new fuzzy selection based on membership values, which are generated from fuzzy c-means clustering, to select appropriate data to enhance the classification performance of the support vector machine (SVM). An empirical example based on the SVMFS shows that the proposed SVMFS can obtain a superior accuracy rate. Moreover, the new fuzzy selection also verifies that it can effectively select the training dataset.

2021 ◽  
Vol 40 (1) ◽  
pp. 1481-1494
Author(s):  
Geng Deng ◽  
Yaoguo Xie ◽  
Xindong Wang ◽  
Qiang Fu

Many classification problems contain shape information from input features, such as monotonic, convex, and concave. In this research, we propose a new classifier, called Shape-Restricted Support Vector Machine (SR-SVM), which takes the component-wise shape information to enhance classification accuracy. There exists vast research literature on monotonic classification covering monotonic or ordinal shapes. Our proposed classifier extends to handle convex and concave types of features, and combinations of these types. While standard SVM uses linear separating hyperplanes, our novel SR-SVM essentially constructs non-parametric and nonlinear separating planes subject to component-wise shape restrictions. We formulate SR-SVM classifier as a convex optimization problem and solve it using an active-set algorithm. The approach applies basis function expansions on the input and effectively utilizes the standard SVM solver. We illustrate our methodology using simulation and real world examples, and show that SR-SVM improves the classification performance with additional shape information of input.


2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Fangbin Zhou ◽  
Lianhua Zou ◽  
Xuejun Liu ◽  
Yunfei Zhang ◽  
Fanyi Meng ◽  
...  

AbstractMicrolandform classification of grid digital elevation models (DEMs) is the foundation of digital landform refinement applications. To solve the shortcomings of the traditional regular grid DEM microlandform classification method, including low automation and incomplete classification results, a support vector machine (SVM) classifier was designed for grid DEM microlandform classification, and an automatic grid-based DEM microlandform classification method based on the SVM method was created. The experiment applies the SVM-based grid DEM microlandform classification method to identify different hill positions, namely, the summit, shoulder, back-slope, foot-slope, toe-slope, and alluvium. The results show that this method is most efficient in identifying the toe-slope, with an accuracy rate of 99.60%, and least efficient in identifying the foot-slope, with an accuracy rate of 98.18%. The kappa coefficient and model evaluation index F1-score verify that the method and model are reliable when applied to grid DEM microlandform classification problems.


2019 ◽  
Vol 17 ◽  
Author(s):  
Yanqiu Yao ◽  
Xiaosa Zhao ◽  
Qiao Ning ◽  
Junping Zhou

Background: Glycation is a nonenzymatic post-translational modification process by attaching a sugar molecule to a protein or lipid molecule. It may impair the function and change the characteristic of the proteins which may lead to some metabolic diseases. In order to understand the underlying molecular mechanisms of glycation, computational prediction methods have been developed because of their convenience and high speed. However, a more effective computational tool is still a challenging task in computational biology. Methods: In this study, we showed an accurate identification tool named ABC-Gly for predicting lysine glycation sites. At first, we utilized three informative features, including position-specific amino acid propensity, secondary structure and the composition of k-spaced amino acid pairs to encode the peptides. Moreover, to sufficiently exploit discriminative features thus can improve the prediction and generalization ability of the model, we developed a two-step feature selection, which combined the Fisher score and an improved binary artificial bee colony algorithm based on support vector machine. Finally, based on the optimal feature subset, we constructed the effective model by using Support Vector Machine on the training dataset. Results: The performance of the proposed predictor ABC-Gly was measured with the sensitivity of 76.43%, the specificity of 91.10%, the balanced accuracy of 83.76%, the area under the receiver-operating characteristic curve (AUC) of 0.9313, a Matthew’s Correlation Coefficient (MCC) of 0.6861 by 10-fold cross-validation on training dataset, and a balanced accuracy of 59.05% on independent dataset. Compared to the state-of-the-art predictors on the training dataset, the proposed predictor achieved significant improvement in the AUC of 0.156 and MCC of 0.336. Conclusion: The detailed analysis results indicated that our predictor may serve as a powerful complementary tool to other existing methods for predicting protein lysine glycation. The source code and datasets of the ABC-Gly were provided in the Supplementary File 1.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 27789-27801 ◽  
Author(s):  
Hongxin Xue ◽  
Yanping Bai ◽  
Hongping Hu ◽  
Ting Xu ◽  
Haijian Liang

2011 ◽  
Vol 181-182 ◽  
pp. 830-835
Author(s):  
Min Song Li

Latent Semantic Indexing(LSI) is an effective feature extraction method which can capture the underlying latent semantic structure between words in documents. However, it is probably not the most appropriate for text categorization to use the method to select feature subspace, since the method orders extracted features according to their variance,not the classification power. We proposed a method based on support vector machine to extract features and select a Latent Semantic Indexing that be suited for classification. Experimental results indicate that the method improves classification performance with more compact representation.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Suhail Khokhar ◽  
A. A. Mohd Zin ◽  
M. A. Bhayo ◽  
A. S. Mokhtar

The monitoring of power quality (PQ) disturbances in a systematic and automated way is an important issue to prevent detrimental effects on power system. The development of new methods for the automatic recognition of single and hybrid PQ disturbances is at present a major concern. This paper presents a combined approach of wavelet transform based support vector machine (WT-SVM) for the automatic classification of single and hybrid PQ disturbances. The proposed approach is applied by using synthetic models of various single and hybrid PQ signals. The suitable features of the PQ waveforms were first extracted by using discrete wavelet transform. Then SVM classifies the type of PQ disturbances based on these features. The classification performance of the proposed algorithm is also compared with wavelet based radial basis function neural network, probabilistic neural network and feed-forward neural network. The experimental results show that the recognition rate of the proposed WT-SVM based classification system is more accurate and much better than the other classifiers. 


2021 ◽  
Vol 20 (1) ◽  
pp. 8-16
Author(s):  
Md Fahim Rizwan ◽  
Rayed Farhad ◽  
Md. Hasan Imam

This study represents a detailed investigation of induced stress detection in humans using Support Vector Machine algorithms. Proper detection of stress can prevent many psychological and physiological problems like the occurrence of major depression disorder (MDD), stress-induced cardiac rhythm abnormalities, or arrhythmia. Stress induced due to COVID -19 pandemic can make the situation worse for the cardiac patients and cause different abnormalities in the normal people due to lockdown condition. Therefore, an ECG based technique is proposed in this paper where the ECG can be recorded for the available handheld/portable devices which are now common to many countries where people can take ECG by their own in their houses and get preliminary information about their cardiac health. From ECG, we can derive RR interval, QT interval, and EDR (ECG derived Respiration) for developing the model for stress detection also. To validate the proposed model, an open-access database named "drivedb” available at Physionet (physionet.org) was used as the training dataset. After verifying several SVM models by changing the ECG length, features, and SVM Kernel type, the results showed an acceptable level of accuracy for Fine Gaussian SVM (i.e. 98.3% for 1 min ECG and 93.6 % for 5 min long ECG) with Gaussian Kernel while using all available features (RR, QT, and EDR). This finding emphasizes the importance of including ventricular polarization and respiratory information in stress detection and the possibility of stress detection from short length data(i.e. form 1 min ECG data), which will be very useful to detect stress through portable ECG devices in locked down condition to analyze mental health condition without visiting the specialist doctor at hospital. This technique also alarms the cardiac patients form being stressed too  much which might cause severe arrhythmogenesis.


Sign in / Sign up

Export Citation Format

Share Document