scholarly journals Analytic Extension of Riemannian Analytic Manifolds and Local Isometries

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1855
Author(s):  
Vladimir A. Popov

This article deals with a locally given Riemannian analytic manifold. One of the main tasks is to define its regular analytic extension in order to generalize the notion of completeness. Such extension is studied for metrics whose Lie algebra of all Killing vector fields has no center. The generalization of completeness for an arbitrary metric is given, too. Another task is to analyze the possibility of extending local isometry to isometry of some manifold. It can be done for metrics whose Lie algebra of all Killing vector fields has no center. For such metrics there exists a manifold on which any Killing vector field generates one parameter group of isometries. We prove the following almost necessary condition under which Lie algebra of all Killing vector fields generates a group of isometries on some manifold. Let g be Lie algebra of all Killing vector fields on Riemannian analytic manifold, h⊂g is its stationary subalgebra, z⊂g is its center and [g,g] is commutant. G is Lie group generated by g and is subgroup generated by h⊂g. If h∩(z+[g;g])=h∩[g;g], then H is closed in G.

2014 ◽  
Vol 26 (5) ◽  
Author(s):  
Shaoqiang Deng ◽  
Ming Xu

AbstractIn this paper, we study Clifford–Wolf translations of Finsler spaces. We give a characterization of those Clifford–Wolf translations generated by Killing vector fields. In particular, we show that there is a natural interrelation between the local one-parameter groups of Clifford–Wolf translations and the Killing vector fields of constant length. In the special case of homogeneous Randers spaces, we give some explicit sufficient and necessary conditions for a Killing vector field to have a constant length, in which case the local one-parameter group of isometries generated by the Killing field consist of Clifford–Wolf translations. Finally, we construct explicit examples to explain some of the results of this paper.


2020 ◽  
Vol 22 (4) ◽  
pp. 223-226
Author(s):  
M.M. Khashaev

Four parameter group of transformations containing rotations and time translations is consi[1]dered due to spherical symmetry and stationarity of the space-time metric. It is found that there exists such a quartet of Killing vector fields which constitute the Lie algebra of the transforma[1]tion group and in which space-like vectors are not orthogonal to the time-like one. The metric corresponding to the Lie algebra of Killing vectors is composed. It is shown that the metric is non-static.


Author(s):  
Michael Kachelriess

This chapter introduces tensor fields, covariant derivatives and the geodesic equation on a (pseudo-) Riemannian manifold. It discusses how symmetries of a general space-time can be found from the Killing equation, and how the existence of Killing vector fields is connected to global conservation laws.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 348
Author(s):  
Merced Montesinos ◽  
Diego Gonzalez ◽  
Rodrigo Romero ◽  
Mariano Celada

We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by n-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local SO(n) or SO(n−1,1) transformations, ‘improved diffeomorphisms’, and the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local SO(3,1) or SO(4) off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.


2019 ◽  
Vol 16 (11) ◽  
pp. 1950180 ◽  
Author(s):  
I. P. Lobo ◽  
G. G. Carvalho

Motivated by the hindrance of defining metric tensors compatible with the underlying spinor structure, other than the ones obtained via a conformal transformation, we study how some geometric objects are affected by the action of a disformal transformation in the closest scenario possible: the disformal transformation in the direction of a null-like vector field. Subsequently, we analyze symmetry properties such as mutual geodesics and mutual Killing vectors, generalized Weyl transformations that leave the disformal relation invariant, and introduce the concept of disformal Killing vector fields. In most cases, we use the Schwarzschild metric, in the Kerr–Schild formulation, to verify our calculations and results. We also revisit the disformal operator using a Newman–Penrose basis to show that, in the null-like case, this operator is not diagonalizable.


2008 ◽  
Vol 23 (05) ◽  
pp. 749-759 ◽  
Author(s):  
GHULAM SHABBIR ◽  
M. RAMZAN

A study of nonstatic spherically symmetric space–times according to their proper curvature collineations is given by using the rank of the 6×6 Riemann matrix and direct integration techniques. Studying proper curvature collineations in each case of the above space–times it is shown that when the above space–times admit proper curvature collineations, they turn out to be static spherically symmetric and form an infinite dimensional vector space. In the nonstatic cases curvature collineations are just Killing vector fields.


2021 ◽  
Vol 13(62) (2) ◽  
pp. 451-462
Author(s):  
Lakehal Belarbi

In this work we consider the three-dimensional generalized symmetric space, equipped with the left-invariant pseudo-Riemannian metric. We determine Killing vector fields and affine vectors fields. Also we obtain a full classification of Ricci, curvature and matter collineations


Sign in / Sign up

Export Citation Format

Share Document