scholarly journals Aboodh Transform Iterative Method for Spatial Diffusion of a Biological Population with Fractional-Order

Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 155
Author(s):  
Gbenga O. Ojo ◽  
Nazim I. Mahmudov

In this paper, a new approximate analytical method is proposed for solving the fractional biological population model, the fractional derivative is described in the Caputo sense. This method is based upon the Aboodh transform method and the new iterative method, the Aboodh transform is a modification of the Laplace transform. Illustrative cases are considered and the comparison between exact solutions and numerical solutions are considered for different values of alpha. Furthermore, the surface plots are provided in order to understand the effect of the fractional order. The advantage of this method is that it is efficient, precise, and easy to implement with less computational effort.

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 177-186 ◽  
Author(s):  
Amit Prakash ◽  
Manoj Kumar

AbstractIn this work, we provide an approximate solution of a parabolic fractional degenerate problem emerging in a spatial diffusion of biological population model using a fractional variational iteration method (FVIM). Four test illustrations are used to show the proficiency and accuracy of the projected scheme. Comparisons between exact solutions and numerical solutions are presented for different values of fractional orderα.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Mohammad Jibran Khan ◽  
Rashid Nawaz ◽  
Samreen Farid ◽  
Javed Iqbal

The new iterative method has been used to obtain the approximate solutions of time fractional damped Burger and time fractional Sharma-Tasso-Olver equations. Results obtained by the proposed method for different fractional-order derivatives are compared with those obtained by the fractional reduced differential transform method (FRDTM). The 2nd-order approximate solutions by the new iterative method are in good agreement with the exact solution as compared to the 5th-order solution by the FRDTM.


Fractals ◽  
2019 ◽  
Vol 27 (05) ◽  
pp. 1950069 ◽  
Author(s):  
JAMSHAID UL RAHMAN ◽  
DIANCHEN LU ◽  
MUHAMMAD SULEMAN ◽  
JI-HUAN HE ◽  
MUHAMMAD RAMZAN

The foremost purpose of this paper is to present a valuable numerical procedure constructed on Elzaki transform and He’s Homotopy perturbation method (HPM) for nonlinear partial differential equation arising in spatial flow characterizing the general biological population model for animals. The actions are made usually by mature animals driven out by intruders or by young animals just accomplished maturity moving out of their parental region to initiate breeding region of their own. He–Elzaki method is a blend of Elzaki transform and He’s HPM. The results attained are compared with Sumudu decomposition method (SDM). The numerical results attained by suggested method specify that the procedure is easy to implement and precise. These outcomes reveal that the proposed method is computationally very striking.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Limei Yan

A relatively new iterative Laplace transform method, which combines two methods; the iterative method and the Laplace transform method, is applied to obtain the numerical solutions of fractional Fokker-Planck equations. The method gives numerical solutions in the form of convergent series with easily computable components, requiring no linearization or small perturbation. The numerical results show that the approach is easy to implement and straightforward when applied to space-time fractional Fokker-Planck equations. The method provides a promising tool for solving space-time fractional partial differential equations.


2016 ◽  
Vol 09 (06) ◽  
pp. 1650081 ◽  
Author(s):  
S. Sarwar ◽  
M. A. Zahid ◽  
S. Iqbal

In this paper, we study the fractional-order biological population models (FBPMs) with Malthusian, Verhulst, and porous media laws. The fractional derivative is defined in Caputo sense. The optimal homotopy asymptotic method (OHAM) for partial differential equations (PDEs) is extended and successfully implemented to solve FBPMs. Third-order approximate solutions are obtained and compared with the exact solutions. The numerical results unveil that the proposed extension in the OHAM for fractional-order differential problems is very effective and simple in computation. The results reveal the effectiveness with high accuracy and extremely efficient to handle most complicated biological population models.


2021 ◽  
Vol 26 (4) ◽  
pp. 78
Author(s):  
Hamzah Abdulrahman Alharthi

In this work, fractional-order strain theory was applied to construct a novel model that introduces a thermal analysis of a thermoelastic, isotropic, and homogeneous nanobeam. Under supported conditions of fixed aspect ratios, a two-temperature generalized thermoelasticity theory based on one relaxation time was used. The governing differential equations were solved using the Laplace transform, and their inversions were found by applying the Tzou technique. The numerical solutions and results for a thermoelastic rectangular silicon nitride nanobeam were validated and supported in the case of ramp-type heating. Graphs were used to present the numerical results. The two-temperature model parameter, beam size, ramp-type heat, and beam thickness all have a substantial influence on all of the investigated functions. Moreover, the parameter of the ramp-type heat might be beneficial for controlling the damping of nanobeam energy.


Sign in / Sign up

Export Citation Format

Share Document