scholarly journals Resolution Dimension Relative to Resolving Subcategories in Extriangulated Categories

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 980
Author(s):  
Lingling Tan ◽  
Li Liu

Let (C,E,s) be an extriangulated category with a proper class ξ of E-triangles and X a resolving subcategory of C. In this paper, we introduce the notion of X-resolution dimension relative to the subcategory X in C, and then give some descriptions of objects with finite X-resolution dimension. In particular, we obtain Auslander-Buchweitz approximations for these objects. As applications, we construct adjoint pairs for two kinds of inclusion functors, and construct a new resolving subcategory from a given resolving subcategory which reformulates some known results.


2021 ◽  
Vol 19 (1) ◽  
pp. 121-143
Author(s):  
Xin Ma ◽  
Tiwei Zhao

Abstract Let T {\mathcal{T}} be a triangulated category with a proper class ξ \xi of triangles and X {\mathcal{X}} be a subcategory of T {\mathcal{T}} . We first introduce the notion of X {\mathcal{X}} -resolution dimensions for a resolving subcategory of T {\mathcal{T}} and then give some descriptions of objects having finite X {\mathcal{X}} -resolution dimensions. In particular, we obtain Auslander-Buchweitz approximations for these objects. As applications, we construct adjoint pairs for two kinds of inclusion functors and characterize objects having finite X {\mathcal{X}} -resolution dimensions in terms of a notion of ξ \xi -cellular towers. We also construct a new resolving subcategory from a given resolving subcategory and reformulate some known results.



2014 ◽  
Vol 57 (2) ◽  
pp. 263-284 ◽  
Author(s):  
XIAOYAN YANG

AbstractWe define model structures on a triangulated category with respect to some proper classes of triangles and give a general study of triangulated model structures. We look at the relationship between these model structures and cotorsion pairs with respect to a proper class of triangles on the triangulated category. In particular, we get Hovey's one-to-one correspondence between triangulated model structures and complete cotorsion pairs with respect to a proper class of triangles. Some applications are given.



2006 ◽  
Vol 71 (3) ◽  
pp. 1029-1043 ◽  
Author(s):  
Natasha Dobrinen ◽  
Sy-David Friedman

AbstractThis paper investigates when it is possible for a partial ordering ℙ to force Pk(Λ)\V to be stationary in Vℙ. It follows from a result of Gitik that whenever ℙ adds a new real, then Pk(Λ)\V is stationary in Vℙ for each regular uncountable cardinal κ in Vℙ and all cardinals λ ≥ κ in Vℙ [4], However, a covering theorem of Magidor implies that when no new ω-sequences are added, large cardinals become necessary [7]. The following is equiconsistent with a proper class of ω1-Erdős cardinals: If ℙ is ℵ1-Cohen forcing, then Pk(Λ)\V is stationary in Vℙ, for all regular κ ≥ ℵ2and all λ ≩ κ. The following is equiconsistent with an ω1-Erdős cardinal: If ℙ is ℵ1-Cohen forcing, then is stationary in Vℙ. The following is equiconsistent with κ measurable cardinals: If ℙ is κ-Cohen forcing, then is stationary in Vℙ.



1990 ◽  
Vol 13 (3-4) ◽  
pp. 385-393 ◽  
Author(s):  
Horst Herrlich
Keyword(s):  


Author(s):  
Zenghui Gao ◽  
Wan Wu

Let [Formula: see text] be an injectively resolving subcategory of left [Formula: see text]-modules. We introduce and study [Formula: see text]-Gorenstein flat modules as a common generalization of some known modules such as Gorenstein flat modules (Enochs, Jenda and Torrecillas, 1993), Gorenstein AC-flat modules (Bravo, Estrada and Iacob, 2018). Then we define a resolution dimension relative to the [Formula: see text]-Gorensteinflat modules, investigate the properties of the homological dimension and unify some important properties possessed by some known homological dimensions. In addition, stability of the category of [Formula: see text]-Gorensteinflat modules is discussed, and some known results are obtained as applications.



1977 ◽  
Vol 23 (2) ◽  
pp. 207-241 ◽  
Author(s):  
Walter Taylor

By a variety of topological algebras we mean a class V of topological algebras of a fixed type closed under the formation of subalgebras, products and quotients (i.e. images under continuous homomorphisms yielding the quotient topology). In symbols, V = SV = PV = QV. if V is also closed under the formation of arbitrary continuous homomorphic images, then V is a wide variety. variety. As an example we have the full variety V = Modr (Σ), the class of all topological algebras of a fixed type τ obeying a fixed set Σ of algebraic identities. But not every wide variety is full, e.g. the class of all indiscrete topological algebras of a fixed type; in fact, as Morris observed (1970b), there exists a proper class of varieties of topological groups.



1978 ◽  
Vol 19 (3) ◽  
pp. 371-380 ◽  
Author(s):  
Jan Reiterman

The aim of the paper is to study the interrelation between several natural smallness conditions on an algebraic theory with a proper class of operations. The conditions concern the existence of sets of data determining algebras, homomorphisms, subalgebras, and congruences.



2009 ◽  
Vol 74 (2) ◽  
pp. 641-654 ◽  
Author(s):  
Andrew D. Brooke-Taylor

AbstractWe use a reverse Easton forcing iteration to obtain a universe with a definable well-order, while preserving the GCH and proper classes of a variety of very large cardinals. This is achieved by coding using the principle , at a proper class of cardinals κ. By choosing the cardinals at which coding occurs sufficiently sparsely, we are able to lift the embeddings witnessing the large cardinal properties without having to meet any non-trivial master conditions.



2019 ◽  
Vol 18 (07) ◽  
pp. 1950131
Author(s):  
Jawad Abuhlail ◽  
Hamza Hroub

We study Zariski-like topologies on a proper class [Formula: see text] of a complete lattice [Formula: see text]. We consider [Formula: see text] with the so-called classical Zariski topology [Formula: see text] and study its topological properties (e.g. the separation axioms, the connectedness, the compactness) and provide sufficient conditions for it to be spectral. We say that [Formula: see text] is [Formula: see text]-top if [Formula: see text] is a topology. We study the interplay between the algebraic properties of an [Formula: see text]-top complete lattice [Formula: see text] and the topological properties of [Formula: see text] Our results are applied to several spectra which are proper classes of [Formula: see text] where [Formula: see text] is a nonzero left module over an arbitrary associative ring [Formula: see text] (e.g. the spectra of prime, coprime, fully prime submodules) of [Formula: see text] as well as to several spectra of the dual complete lattice [Formula: see text] (e.g. the spectra of first, second and fully coprime submodules of [Formula: see text]).



Sign in / Sign up

Export Citation Format

Share Document