CONSTRUCTION OF A MODEL FOR GÖDEL–BERNAYS SET THEORY FOR WHICH THE CLASS OF NATURAL NUMBERS IS A SET OF THE MODEL AND A PROPER CLASS IN THE THEORY

2014 ◽  
pp. 436-437 ◽  
Author(s):  
PETR VOPĚNKA
1965 ◽  
Vol 30 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Gaisi Takeuti

In this paper, by a function of ordinals we understand a function which is defined for all ordinals and each of whose value is an ordinal. In [7] (also cf. [8] or [9]) we defined recursive functions and predicates of ordinals, following Kleene's definition on natural numbers. A predicate will be called arithmetical, if it is obtained from a recursive predicate by prefixing a sequence of alternating quantifiers. A function will be called arithmetical, if its representing predicate is arithmetical.The cardinals are identified with those ordinals a which have larger power than all smaller ordinals than a. For any given ordinal a, we denote by the cardinal of a and by 2a the cardinal which is of the same power as the power set of a. Let χ be the function such that χ(a) is the least cardinal which is greater than a.Now there are functions of ordinals such that they are easily defined in set theory, but it seems impossible to define them as arithmetical ones; χ is such a function. If we define χ in making use of only the language on ordinals, it seems necessary to use the notion of all the functions from ordinals, e.g., as in [6].


1953 ◽  
Vol 18 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Hao Wang

It is known that we can introduce in number theory (for example, the system Z of Hilbert-Bernays) by induction schemata certain predicates of natural numbers which cannot be expressed explicitly within the framework of number theory. The question arises how we can define these predicates in some richer system, without employing induction schemata. In this paper a general notion of definability by induction (relative to number theory), which seems to apply to all the known predicates of this kind, is introduced; and it is proved that in a system L1 which forms an extension of number theory all predicates which are definable by induction (hereafter to be abbreviated d.i.) according to the definition are explicitly expressible.In order to define such predicates and prove theorems answering to their induction schemata, we have to allow certain impredicative classes in L1. However, if we want merely to prove that for each constant number the special case of the induction schema for a predicate d.i. is provable, we do not have to assume the existence of impredicative classes. A certain weaker system L2, in which only predicative classes of natural numbers are allowed, is sufficient for the purpose. It is noted that a truth definition for number theory can be obtained in L2. Consistency proofs for number theory do not seem to be formalizable in L2, although they can, it is observed, be formalized in L1.In general, given any ordinary formal system (say Zermelo set theory), it is possible to define by induction schemata, in the same manner as in number theory, certain predicates which are not explicitly definable in the system. Here again, by extending the system in an analogous fashion, these predicates become expressible in the resulting system. The crucial predicate instrumental to obtaining a truth definition for a given system is taken as an example.


1939 ◽  
Vol 4 (3) ◽  
pp. 105-112 ◽  
Author(s):  
Alfred Tarski

It is my intention in this paper to add somewhat to the observations already made in my earlier publications on the existence of undecidable statements in systems of logic possessing rules of inference of a “non-finitary” (“non-constructive”) character (§§1–4).I also wish to emphasize once more the part played by the concept of truth in relation to problems of this nature (§§5–8).At the end of this paper I shall give a result which was not touched upon in my earlier publications. It seems to be of interest for the reason (among others) that it is an example of a result obtained by a fruitful combination of the method of constructing undecidable statements (due to K. Gödel) with the results obtained in the theory of truth.1. Let us consider a formalized logical system L. Without giving a detailed description of the system we shall assume that it possesses the usual “finitary” (“constructive”) rules of inference, such as the rule of substitution and the rule of detachment (modus ponens), and that among the laws of the system are included all the postulates of the calculus of statements, and finally that the laws of the system suffice for the construction of the arithmetic of natural numbers. Moreover, the system L may be based upon the theory of types and so be the result of some formalization of Principia mathematica. It may also be a system which is independent of any theory of types and resembles Zermelo's set theory.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 86 ◽  
Author(s):  
Dmitri Shakhmatov ◽  
Víctor Yañez

We give a “naive” (i.e., using no additional set-theoretic assumptions beyond ZFC, the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a Boolean topological group G without infinite separable pseudocompact subsets having the following “selective” compactness property: For each free ultrafilter p on the set N of natural numbers and every sequence ( U n ) of non-empty open subsets of G, one can choose a point x n ∈ U n for all n ∈ N in such a way that the resulting sequence ( x n ) has a p-limit in G; that is, { n ∈ N : x n ∈ V } ∈ p for every neighbourhood V of x in G. In particular, G is selectively pseudocompact (strongly pseudocompact) but not selectively sequentially pseudocompact. This answers a question of Dorantes-Aldama and the first listed author. The group G above is not pseudo- ω -bounded either. Furthermore, we show that the free precompact Boolean group of a topological sum ⨁ i ∈ I X i , where each space X i is either maximal or discrete, contains no infinite separable pseudocompact subsets.


1999 ◽  
Vol 64 (2) ◽  
pp. 486-488 ◽  
Author(s):  
John L. Bell

By Frege's Theorem is meant the result, implicit in Frege's Grundlagen, that, for any set E, if there exists a map υ from the power set of E to E satisfying the conditionthen E has a subset which is the domain of a model of Peano's axioms for the natural numbers. (This result is proved explicitly, using classical reasoning, in Section 3 of [1].) My purpose in this note is to strengthen this result in two directions: first, the premise will be weakened so as to require only that the map υ be defined on the family of (Kuratowski) finite subsets of the set E, and secondly, the argument will be constructive, i.e., will involve no use of the law of excluded middle. To be precise, we will prove, in constructive (or intuitionistic) set theory, the followingTheorem. Let υ be a map with domain a family of subsets of a set E to E satisfying the following conditions:(i) ø ϵdom(υ)(ii)∀U ϵdom(υ)∀x ϵ E − UU ∪ x ϵdom(υ)(iii)∀UV ϵdom(5) υ(U) = υ(V) ⇔ U ≈ V.Then we can define a subset N of E which is the domain of a model of Peano's axioms.


Kybernetes ◽  
2008 ◽  
Vol 37 (3/4) ◽  
pp. 453-457 ◽  
Author(s):  
Wujia Zhu ◽  
Yi Lin ◽  
Guoping Du ◽  
Ningsheng Gong

PurposeThe purpose is to show that all uncountable infinite sets are self‐contradictory non‐sets.Design/methodology/approachA conceptual approach is taken in the paper.FindingsGiven the fact that the set N={x|n(x)} of all natural numbers, where n(x)=df “x is a natural number” is a self‐contradicting non‐set in this paper, the authors prove that in the framework of modern axiomatic set theory ZFC, various uncountable infinite sets are either non‐existent or self‐contradicting non‐sets. Therefore, it can be astonishingly concluded that in both the naive set theory or the modern axiomatic set theory, if any of the actual infinite sets exists, it must be a self‐contradicting non‐set.Originality/valueThe first time in history, it is shown that such convenient notion as the set of all real numbers needs to be reconsidered.


1954 ◽  
Vol 19 (3) ◽  
pp. 197-200 ◽  
Author(s):  
Václav Edvard Beneš

1. In this paper we construct a model for part of the system NF of [4]. Specifically, we define a relation R of natural numbers such that the R-relativiseds of all the axioms except P9 of Hailperin's finitization [2] of NF become theorems of say Zermelo set theory. We start with an informal explanation of the model.2. Scrutiny of P1-P8 of [2] suggests that a model for these axioms might be constructed by so to speak starting with a universe that contained a “universe set” and a “cardinal 1”, and passing to its closure under the operations implicit in P1-P7, viz., the Boolean, the domain, the direct product, the converse, and the mixtures of product and inverse operations represented by P3 and P4. To obtain such closure we must find a way of representing the operations that involve ordered pairs and triples.We take as universe of the model the set of natural numbers ω; we let 0 represent the “universe set” and 1 represent “cardinal 1”. Then, in order to be able to refer in the model to the unordered pair of two sets, we determine all representatives of unordered pairs in advance by assigning them the even numbers in unique fashion (see d3 and d25); we can now define the operations that involve ordered pairs and triples, and obtain closure under them using the odd numbers. It remains to weed out, as in d26, the unnecessary sets so as to satisfy the axiom of extensionality.


2005 ◽  
Vol 70 (3) ◽  
pp. 969-978 ◽  
Author(s):  
Laura Crosilla ◽  
Hajime Ishihara ◽  
Peter Schuster

AbstractThe Dedekind cuts in an ordered set form a set in the sense of constructive Zermelo–Fraenkel set theory. We deduce this statement from the principle of refinement, which we distill before from the axiom of fullness. Together with exponentiation, refinement is equivalent to fullness. None of the defining properties of an ordering is needed, and only refinement for two–element coverings is used.In particular, the Dedekind reals form a set: whence we have also refined an earlier result by Aczel and Rathjen, who invoked the full form of fullness. To further generalise this, we look at Richman's method to complete an arbitrary metric space without sequences, which he designed to avoid countable choice. The completion of a separable metric space turns out to be a set even if the original space is a proper class: in particular, every complete separable metric space automatically is a set.


Sign in / Sign up

Export Citation Format

Share Document