scholarly journals Large cardinals and definable well-orders on the universe

2009 ◽  
Vol 74 (2) ◽  
pp. 641-654 ◽  
Author(s):  
Andrew D. Brooke-Taylor

AbstractWe use a reverse Easton forcing iteration to obtain a universe with a definable well-order, while preserving the GCH and proper classes of a variety of very large cardinals. This is achieved by coding using the principle , at a proper class of cardinals κ. By choosing the cardinals at which coding occurs sufficiently sparsely, we are able to lift the embeddings witnessing the large cardinal properties without having to meet any non-trivial master conditions.

1979 ◽  
Vol 44 (4) ◽  
pp. 563-565
Author(s):  
Carl F. Morgenstern

It is well known that the first strongly inaccessible cardinal is strictly less than the first weakly compact cardinal which in turn is strictly less than the first Ramsey cardinal, etc. However, once one passes the first measurable cardinal the inequalities are no longer strict. Magidor [3] has shown that the first strongly compact cardinal may be equal to the first measurable cardinal or equal to the first super-compact cardinal (the first supercompact cardinal is strictly larger than the first measurable cardinal). In this note we will indicate how Magidor's methods can be used to show that it is undecidable whether one cardinal (the first strongly compact) is greater than or less than another large cardinal (the first huge cardinal). We assume that the reader is familiar with the ultrapower construction of Scott, as presented in Drake [1] or Kanamori, Reinhardt and Solovay [2].Definition. A cardinal κ is huge (or 1-huge) if there is an elementary embedding j of the universe V into a transitive class M such that M contains the ordinals, is closed under j(κ) sequences, j(κ) > κ and j ↾ Rκ = id. Let κ denote the first huge cardinal, and let λ = j(κ).One can see from easy reflection arguments that κ and λ are inaccessible in V and, in fact, that κ is measurable in V.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750009 ◽  
Author(s):  
Toshimichi Usuba

A transitive model [Formula: see text] of ZFC is called a ground if the universe [Formula: see text] is a set forcing extension of [Formula: see text]. We show that the grounds of[Formula: see text][Formula: see text][Formula: see text] are downward set-directed. Consequently, we establish some fundamental theorems on the forcing method and the set-theoretic geology. For instance, (1) the mantle, the intersection of all grounds, must be a model of ZFC. (2) [Formula: see text] has only set many grounds if and only if the mantle is a ground. We also show that if the universe has some very large cardinal, then the mantle must be a ground.


1986 ◽  
Vol 51 (3) ◽  
pp. 547-559 ◽  
Author(s):  
Stewart Baldwin

Definition. A cardinal κ is strong iff for every x there is an elementary embedding j:V → M with critical point κ such that x ∈ M.κ is superstrong iff ∃j:V → M with critical point κ such that Vj(κ) ∈ M.These definitions are natural weakenings of supercompactness and hugeness respectively and display some of the same relations. For example, if κ is superstrong then Vκ ⊨ “∃ proper class of strong cardinals”, but the smallest superstrong cardinal is less than the smallest strong cardinal (if both types exist). (See [SRK] and [Mo] for the arguments involving supercompact and huge, which translate routinely to strong and superstrong.)Given any two types of large cardinals, a typical vague question which is often asked is “How large is the gap in consistency strength?” In one sense the gap might be considered relatively small, since the “higher degree” strong cardinals described below (a standard trick that is nearly always available) and the Shelah and Woodin hierarchies of cardinals (see [St] for a definition of these) seem to be (at least at this point in time) the only “natural” large cardinal properties lying between strong cardinals and superstrong cardinals in consistency strength.


1985 ◽  
Vol 50 (4) ◽  
pp. 1002-1019 ◽  
Author(s):  
Sy D. Friedman

In the wake of Silver's breakthrough on the Singular Cardinals Problem (Silver [74]) followed one of the landmark results in set theory, Jensen's Covering Lemma (Devlin-Jensen [74]): If 0# does not exist then for every uncountable x ⊆ ORD there exists a constructible Y ⊇ X, card(Y) = card(X). Thus it is fair to say that in the absence of large cardinals, V is “close to L”.It is natural to ask, as did Solovay, if we can fairly interpret the phrase “close to L” to mean “generic over L”. For example, if V = L[a], a ⊆ ω and if 0# does not exist then is V-generic over L for some partial ordering ∈ L? Notice that an affirmative answer implies that in the absence of 0#, no real can “code” a proper class of information.Jensen's Coding Theorem provides a negative answer to Solovay's question, in a striking way: Any class can be “coded” by a real without introducing 0#. More precisely, if A ⊆ ORD then there is a forcing definable over 〈L[A], A〉 such that ⊩ V = L[a], a ⊆ ω, A is definable from a. Moreover if 0# ∉ L[A] then ⊩ 0# does not exist. Now as any M ⊨ ZFC can be generically extended to a model of the form L[A] (without introducing 0#) we obtain: For any 〈M, A〉 ⊨ ZFC (that is, M ⊨ ZFC and M obeys Replacement for formulas mentioning A as a predicate) there is an 〈M, A〉-definable forcing such that ⊩ V = L[a], a ⊆ ω, 〈M, A〉 is definable from a. Moreover if 0# ∉ M then ⊩ 0# does not exist.


1981 ◽  
Vol 46 (1) ◽  
pp. 31-40
Author(s):  
Mitchell Spector

The consistency of the Axiom of Determinateness (AD) poses a somewhat problematic question for set theorists. On the one hand, many mathematicians have studied AD, and none has yet derived a contradiction. Moreover, the consequences of AD which have been proven form an extensive and beautiful theory. (See [5] and [6], for example.) On the other hand, many extremely weird propositions follow from AD; these results indicate that AD is not an axiom which we can justify as intuitively true, a priori or by reason of its consequences, and we thus cannot add it to our set theory (as an accepted axiom, evidently true in the cumulative hierarchy of sets). Moreover, these results place doubt on the very consistency of AD. The failure of set theorists to show AD inconsistent over as short a time period as fifteen years can only be regarded as inconclusive, although encouraging, evidence.On the contrary, there is a great deal of rather convincing evidence that the existence of various large cardinals is not only consistent but actually true in the universe of all sets. Thus it becomes of interest to see which consequences of AD can be proven consistent relative to the consistency of ZFC + the existence of some large cardinal. Earlier theorems with this motivation are those of Bull and Kleinberg [2] and Spector ([14]; see also [12], [13]).


2009 ◽  
Vol 74 (4) ◽  
pp. 1155-1170 ◽  
Author(s):  
Peter Koellner ◽  
W. Hugh Woodin

AbstractIn 1985 the second author showed that if there is a proper class of measurable Woodin cardinals and and are generic extensions of V satisfying CH then and agree on all Σ12-statements. In terms of the strong logic Ω-logic this can be reformulated by saying that under the above large cardinal assumption ZFC + CH is Ω-complete for Σ12. Moreover, CH is the unique Σ12-statement with this feature in the sense that any other Σ12-statement with this feature is Ω-equivalent to CH over ZFC. It is natural to look for other strengthenings of ZFC that have an even greater degree of Ω-completeness. For example, one can ask for recursively enumerable axioms A such that relative to large cardinal axioms ZFC + A is Ω-complete for all of third-order arithmetic. Going further, for each specifiable segment Vλ of the universe of sets (for example, one might take Vλ to be the least level that satisfies there is a proper class of huge cardinals), one can ask for recursively enumerable axioms A such that relative to large cardinal axioms ZFC + A is Ω-complete for the theory of Vλ. If such theories exist, extend one another, and are unique in the sense that any other such theory B with the same level of Ω-completeness as A is actually Ω-equivalent to A over ZFC, then this would show that there is a unique Ω-complete picture of the successive fragments of the universe of sets and it would make for a very strong case for axioms complementing large cardinal axioms. In this paper we show that uniqueness must fail. In particular, we show that if there is one such theory that Ω-implies CH then there is another that Ω-implies ¬-CH.


2006 ◽  
Vol 71 (3) ◽  
pp. 1029-1043 ◽  
Author(s):  
Natasha Dobrinen ◽  
Sy-David Friedman

AbstractThis paper investigates when it is possible for a partial ordering ℙ to force Pk(Λ)\V to be stationary in Vℙ. It follows from a result of Gitik that whenever ℙ adds a new real, then Pk(Λ)\V is stationary in Vℙ for each regular uncountable cardinal κ in Vℙ and all cardinals λ ≥ κ in Vℙ [4], However, a covering theorem of Magidor implies that when no new ω-sequences are added, large cardinals become necessary [7]. The following is equiconsistent with a proper class of ω1-Erdős cardinals: If ℙ is ℵ1-Cohen forcing, then Pk(Λ)\V is stationary in Vℙ, for all regular κ ≥ ℵ2and all λ ≩ κ. The following is equiconsistent with an ω1-Erdős cardinal: If ℙ is ℵ1-Cohen forcing, then is stationary in Vℙ. The following is equiconsistent with κ measurable cardinals: If ℙ is κ-Cohen forcing, then is stationary in Vℙ.


2021 ◽  
Vol 27 (2) ◽  
pp. 221-222
Author(s):  
Alejandro Poveda

AbstractThe dissertation under comment is a contribution to the area of Set Theory concerned with the interactions between the method of Forcing and the so-called Large Cardinal axioms.The dissertation is divided into two thematic blocks. In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopěnka’s Principle (Part I). In turn, Block II is devoted to the investigation of some problems arising from Singular Cardinal Combinatorics (Part II and Part III).We commence Part I by investigating the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopěnka’s Principle. As a result, we generalize Magidor’s classical theorems [2] to this higher region of the large-cardinal hierarchy. Also, our analysis allows to settle all the questions that were left open in [1]. Finally, we conclude Part I by presenting a general theory of preservation of $C^{(n)}$ -extendible cardinals under class forcing iterations. From this analysis we derive several applications. For instance, our arguments are used to show that an extendible cardinal is consistent with “ $(\lambda ^{+\omega })^{\mathrm {HOD}}<\lambda ^+$ , for every regular cardinal $\lambda $ .” In particular, if Woodin’s HOD Conjecture holds, and therefore it is provable in ZFC + “There exists an extendible cardinal” that above the first extendible cardinal every singular cardinal $\lambda $ is singular in HOD and $(\lambda ^+)^{\textrm {{HOD}}}=\lambda ^+$ , there may still be no agreement at all between V and HOD about successors of regular cardinals.In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) with other relevant combinatorial principles at the level of successors of singular cardinals. Two of these are the Tree Property and the Reflection of Stationary sets, which are central in Infinite Combinatorics.Specifically, Part II is devoted to prove the consistency of the Tree Property at both $\kappa ^+$ and $\kappa ^{++}$ , whenever $\kappa $ is a strong limit singular cardinal witnessing an arbitrary failure of the SCH. This generalizes the main result of [3] in two senses: it allows arbitrary cofinalities for $\kappa $ and arbitrary failures for the SCH.In the last part of the dissertation (Part III) we introduce the notion of $\Sigma $ -Prikry forcing. This new concept allows an abstract and uniform approach to the theory of Prikry-type forcings and encompasses several classical examples of Prikry-type forcing notions, such as the classical Prikry forcing, the Gitik-Sharon poset, or the Extender Based Prikry forcing, among many others.Our motivation in this part of the dissertation is to prove an iteration theorem at the level of the successor of a singular cardinal. Specifically, we aim for a theorem asserting that every $\kappa ^{++}$ -length iteration with support of size $\leq \kappa $ has the $\kappa ^{++}$ -cc, provided the iterates belong to a relevant class of $\kappa ^{++}$ -cc forcings. While there are a myriad of works on this vein for regular cardinals, this contrasts with the dearth of investigations in the parallel context of singular cardinals. Our main contribution is the proof that such a result is available whenever the class of forcings under consideration is the family of $\Sigma $ -Prikry forcings. Finally, and as an application, we prove that it is consistent—modulo large cardinals—the existence of a strong limit cardinal $\kappa $ with countable cofinality such that $\mathrm {SCH}_\kappa $ fails and every finite family of stationary subsets of $\kappa ^+$ reflects simultaneously.


2014 ◽  
Vol 79 (4) ◽  
pp. 1092-1119 ◽  
Author(s):  
WILL BONEY

AbstractWe show that Shelah’s Eventual Categoricity Conjecture for successors follows from the existence of class many strongly compact cardinals. This is the first time the consistency of this conjecture has been proven. We do so by showing that every AEC withLS(K) below a strongly compact cardinalκis <κ-tame and applying the categoricity transfer of Grossberg and VanDieren [11]. These techniques also apply to measurable and weakly compact cardinals and we prove similar tameness results under those hypotheses. We isolate a dual property to tameness, calledtype shortness, and show that it follows similarly from large cardinals.


2011 ◽  
Vol 76 (2) ◽  
pp. 519-540 ◽  
Author(s):  
Victoria Gitman

AbstractOne of the numerous characterizations of a Ramsey cardinal κ involves the existence of certain types of elementary embeddings for transitive sets of size κ satisfying a large fragment of ZFC. We introduce new large cardinal axioms generalizing the Ramsey elementary embeddings characterization and show that they form a natural hierarchy between weakly compact cardinals and measurable cardinals. These new axioms serve to further our knowledge about the elementary embedding properties of smaller large cardinals, in particular those still consistent with V = L.


Sign in / Sign up

Export Citation Format

Share Document