scholarly journals Fractional Order Magnetic Resonance Fingerprinting in the Human Cerebral Cortex

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1549
Author(s):  
Viktor Vegh ◽  
Shahrzad Moinian ◽  
Qianqian Yang ◽  
David C. Reutens

Mathematical models are becoming increasingly important in magnetic resonance imaging (MRI), as they provide a mechanistic approach for making a link between tissue microstructure and signals acquired using the medical imaging instrument. The Bloch equations, which describes spin and relaxation in a magnetic field, are a set of integer order differential equations with a solution exhibiting mono-exponential behaviour in time. Parameters of the model may be estimated using a non-linear solver or by creating a dictionary of model parameters from which MRI signals are simulated and then matched with experiment. We have previously shown the potential efficacy of a magnetic resonance fingerprinting (MRF) approach, i.e., dictionary matching based on the classical Bloch equations for parcellating the human cerebral cortex. However, this classical model is unable to describe in full the mm-scale MRI signal generated based on an heterogenous and complex tissue micro-environment. The time-fractional order Bloch equations have been shown to provide, as a function of time, a good fit of brain MRI signals. The time-fractional model has solutions in the form of Mittag–Leffler functions that generalise conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex heterogeneous materials. Hence, we replaced the integer order Bloch equations with the previously reported time-fractional counterpart within the MRF framework and performed experiments to parcellate human gray matter, which consists of cortical brain tissue with different cyto-architecture at different spatial locations. Our findings suggest that the time-fractional order parameters, α and β, potentially associate with the effect of interareal architectonic variability, which hypothetically results in more accurate cortical parcellation.

Author(s):  
Erhan Yumuk ◽  
Müjde Güzelkaya ◽  
İbrahim Eksin

In this study, we deal with systems that can be represented by single fractional order pole models and propose an integer order proportional–integral/proportional–integral–derivative controller design methodology for this class. The basic principle or backbone of the design methodology of the proposed controller relies on using the inverse of the fractional model and then approximating this fractional controller transfer function by a low integer order model using Oustaloup filter. The emerging integer order controller reveals itself either in pre-filtered proportional–integral or proportional–integral–derivative form by emphasizing on the dominancy concept of pole-zero configuration. Parameters of the proposed controllers depend on the parameters of the single fractional order pole model and the only free design parameter left is the overall controller gain. This free design parameter is determined via some approximating functions relying on an optimization procedure. Simulation results show that the proposed controller exhibits either satisfactory or better results with respect to some performance indices and time domain criteria when they are compared to classical integer order proportional–integral–derivative and fractional order proportional–integral–derivative controllers. Moreover, the proposed controller is applied to real-time liquid level control system. The application results show that the proposed controller outperforms the other controllers.


2003 ◽  
Vol 211 (1-2) ◽  
pp. 75-80 ◽  
Author(s):  
Mariana Bendersky ◽  
Carlos Rugilo ◽  
Silvia Kochen ◽  
Gustavo Schuster ◽  
Roberto E.P. Sica

2020 ◽  
Vol 14 ◽  
Author(s):  
Miguel Ángel García-Cabezas ◽  
Julia Liao Hacker ◽  
Basilis Zikopoulos

The human cerebral cortex is parcellated in hundreds of areas using neuroanatomy and imaging methods. Alternatively, cortical areas can be classified into few cortical types according to their degree of laminar differentiation. Cortical type analysis is based on the gradual and systematic variation of laminar features observed across the entire cerebral cortex in Nissl stained sections and has profound implications for understanding fundamental aspects of evolution, development, connections, function, and pathology of the cerebral cortex. In this protocol paper, we explain the general principles of cortical type analysis and provide tables with the fundamental features of laminar structure that are studied for this analysis. We apply cortical type analysis to the micrographs of the Atlas of the human cerebral cortex of von Economo and Koskinas and provide tables and maps with the areas of this Atlas and their corresponding cortical type. Finally, we correlate the cortical type maps with the T1w/T2w ratio from widely used reference magnetic resonance imaging scans. The analysis, tables and maps of the human cerebral cortex shown in this protocol paper can be used to predict patterns of connections between areas according to the principles of the Structural Model and determine their level in cortical hierarchies. Cortical types can also predict the spreading of abnormal proteins in neurodegenerative diseases to the level of cortical layers. In summary, cortical type analysis provides a theoretical and practical framework for directed studies of connectivity, synaptic plasticity, and selective vulnerability to neurologic and psychiatric diseases in the human neocortex.


2019 ◽  
Vol 22 (1) ◽  
pp. 193-216 ◽  
Author(s):  
Tareq Abuaisha ◽  
Jana Kertzscher

Abstract The accurate modelling of an electrical coil over a wide range of frequency is the keystone for a precise modelling of an electrical machine. As a consequence of copper losses, eddy-current losses and hysteresis losses; electrical coils with conductive ferromagnetic core show different behaviour from that of an ideal coil. Throughout this paper, dynamic modelling and performance analysis of conventional as well as fractional-order models of an electrical coil with an interchangeable core are achieved. Measurement results are acquired through an integration between Matlab and the high-speed measurement system LTT24. In order to assess the accuracy of these models, simulation results are compared with experimental results whereas unknown parameters are identified through an optimization process that is based on the method of least squares. It is known that the parameters of fractional-order model (Lα, α, Cβ, β) can not be measured directly. Therefore, the paper proposes a possibility based on system analysis to derive these parameters (indirect measurement) from the parameters of the classical model. A frequency band beyond the self-resonant frequency of the electrical coil is explored, thus the parasitic capacitance between coils windings must be considered as an important part of the equivalent circuit. The dependency of model parameters on frequency due to skin-effect is also examined.


1996 ◽  
Vol 25 ◽  
pp. S267
Author(s):  
Seiki Konishi ◽  
Ryuichi Yoneyama ◽  
Hiroyuki Itagaki ◽  
Idai Uchida ◽  
Hideki Kato ◽  
...  

1999 ◽  
Vol 18 (6) ◽  
pp. 467-480 ◽  
Author(s):  
C. Xu ◽  
D.L. Pham ◽  
M.E. Rettmann ◽  
D.N. Yu ◽  
J.L. Prince

2020 ◽  
Vol 75 (3) ◽  
pp. 226-233
Author(s):  
Svetlana P. Sergeeva ◽  
Aleksey V. Lyundup ◽  
Valery V. Beregovykh ◽  
Petr F. Litvitskiy ◽  
Aleksey A. Savin ◽  
...  

Background. The search for protein (these include c-fos, ERK1/2, MAP2, NOTCH1) expression that provide neuroplasticity mechanisms of the cerebral cortex after ischemic stroke (IS) patterns is an urgent task. Aims to reveal c-fos, ERK1/2, MAP2, NOTCH1 proteins expression patterns in human cerebral cortex neurons after IS. Materials and methods. We studied 9 left middle cerebral artery (LMCA) IS patients cerebral cortex samples from 3 zones: 1 the zone adjacent to the necrotic tissue focus; 2 zone remote from the previous one by 47 cm; 3 zone of the contralateral hemisphere, symmetric to the IS focus. Control samples were obtained from 3 accident died people. Identification of targeted proteins NSE, c-fos, ERK1/2, MAP2, NOTCH1 was performed by indirect immunoperoxidase immunohistochemical method. Results. Moving away from the ischemic focus, there is an increase in the density of neurons and a decrease in the damaged neurons proportion, the largest share of c-fos protein positive neurons in zone 2, NOTCH1 positive neurons in zone 1, smaller fractions of ERK1/2 and MAP2 positive neurons compared to the control only in samples of zone 1. Conclusions. With the IS development, the contralateral hemisphere is intact tissue increased activation zone, while the zones 1 and 2 have pathological activation signs. In zone 1 of the range, the adaptive response of the tissue decreases, and in zone 2 it expands. Therefore, a key target for therapeutic intervention is zone 2.


Sign in / Sign up

Export Citation Format

Share Document