scholarly journals The Effects of Fractional Time Derivatives in Porothermoelastic Materials Using Finite Element Method

Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1606
Author(s):  
Marin Marin ◽  
Aatef Hobiny ◽  
Ibrahim Abbas

In this work, a new model for porothermoelastic waves under a fractional time derivative and two time delays is utilized to study temperature increments, stress and the displacement components of the solid and fluid phases in porothermoelastic media. The governing equations are presented under Lord–Shulman theory with thermal relaxation time. The finite element method has been adopted to solve these equations due to the complex formulations of this problem. The effects of fractional parameter and porosity in porothermoelastic media have been studied. The numerical outcomes for the temperatures, the stresses and the displacement of the fluid and the solid are presented graphically. These results will allow future studies to gain a detailed insight into non-simple porothermoelasticity with various phases.

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 488 ◽  
Author(s):  
Tareq Saeed ◽  
Ibrahim Abbas ◽  
Marin Marin

The purpose of this study is to provide a method to investigate the effects of thermal relaxation times in a poroelastic material by using the finite element method. The formulations are applied under the Green and Lindsay model, with four thermal relaxation times. Due to the complex governing equation, the finite element method has been used to solve these problems. All physical quantities are presented as symmetric and asymmetric tensors. The effects of thermal relaxation times and porosity in a poro-thermoelastic medium are studied. Numerical computations for temperatures, displacements and stresses for the liquid and the solid are presented graphically.


Author(s):  
Yuan Mao Huang ◽  
Chien Liang Li

A rotary sliding vane compressor was redesigned with extended rods on both edges of each vane and guide slots on both cover plates to improve its performance. The governing equations were derived to obtain loads acting on vanes and the stress of vanes. The finite element method is used with a generated computer program to determine the stress of vanes based on the calculated loads and the measured loads acting on the vanes. The results were compared and show good agreement with those obtained by using an existing software IDEAS.


2009 ◽  
Vol 62 (3) ◽  
Author(s):  
Martin Schanz

This article presents an overview on poroelastodynamic models and some analytical solutions. A brief summary of Biot’s theory and of other poroelastic dynamic governing equations is given. There is a focus on dynamic formulations, and the quasistatic case is not considered at all. Some analytical solutions for special problems, fundamental solutions, and Green’s functions are discussed. The numerical realization with two different methodologies, namely, the finite element method and the boundary element method, is reviewed.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document