scholarly journals The Pauli Problem for Gaussian Quantum States: Geometric Interpretation

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2578
Author(s):  
Maurice A. de Gosson

We solve the Pauli tomography problem for Gaussian signals using the notion of Schur complement. We relate our results and method to a notion from convex geometry, polar duality. In our context polar duality can be seen as a sort of geometric Fourier transform and allows a geometric interpretation of the uncertainty principle and allows to apprehend the Pauli problem in a rather simple way.

Author(s):  
Frank S. Levin

The subject of Chapter 8 is the fundamental principles of quantum theory, the abstract extension of quantum mechanics. Two of the entities explored are kets and operators, with kets being representations of quantum states as well as a source of wave functions. The quantum box and quantum spin kets are specified, as are the quantum numbers that identify them. Operators are introduced and defined in part as the symbolic representations of observable quantities such as position, momentum and quantum spin. Eigenvalues and eigenkets are defined and discussed, with the former identified as the possible outcomes of a measurement. Bras, the counterpart to kets, are introduced as the means of forming probability amplitudes from kets. Products of operators are examined, as is their role underpinning Heisenberg’s Uncertainty Principle. A variety of symbol manipulations are presented. How measurements are believed to collapse linear superpositions to one term of the sum is explored.


2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Maurice A. de Gosson

AbstractWe define and study the notion of quantum polarity, which is a kind of geometric Fourier transform between sets of positions and sets of momenta. Extending previous work of ours, we show that the orthogonal projections of the covariance ellipsoid of a quantum state on the configuration and momentum spaces form what we call a dual quantum pair. We thereafter show that quantum polarity allows solving the Pauli reconstruction problem for Gaussian wavefunctions. The notion of quantum polarity exhibits a strong interplay between the uncertainty principle and symplectic and convex geometry and our approach could therefore pave the way for a geometric and topological version of quantum indeterminacy. We relate our results to the Blaschke–Santaló inequality and to the Mahler conjecture. We also discuss the Hardy uncertainty principle and the less-known Donoho–Stark principle from the point of view of quantum polarity.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Huangjun Zhu

AbstractThe uncertainty principle imposes a fundamental limit on predicting the measurement outcomes of incompatible observables even if complete classical information of the system state is known. The situation is different if one can build a quantum memory entangled with the system. Zero uncertainty states (in contrast with minimum uncertainty states) are peculiar quantum states that can eliminate uncertainties of incompatible von Neumann observables once assisted by suitable measurements on the memory. Here we determine all zero uncertainty states of any given set of nondegenerate observables and determine the minimum entanglement required. It turns out all zero uncertainty states are maximally entangled in a generic case, and vice versa, even if these observables are only weakly incompatible. Our work establishes a simple and precise connection between zero uncertainty and maximum entanglement, which is of interest to foundational studies and practical applications, including quantum certification and verification.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Mawardi Bahri ◽  
Resnawati ◽  
Selvy Musdalifah

In recent years, the two-dimensional (2D) quaternion Fourier and quaternion linear canonical transforms have been the focus of many research papers. In the present paper, based on the relationship between the quaternion Fourier transform (QFT) and the quaternion linear canonical transform (QLCT), we derive a version of the uncertainty principle associated with the QLCT. We also discuss the generalization of the Hausdorff-Young inequality in the QLCT domain.


Author(s):  
Mustapha Boujeddaine ◽  
Mohammed El Kassimi ◽  
Saïd Fahlaoui

Windowing a Fourier transform is a useful tool, which gives us the similarity between the signal and time frequency signal, and it allows to get sense when/where certain frequencies occur in the input signal, this method was introduced by Dennis Gabor. In this paper, we generalize the classical Gabor–Fourier transform (GFT) to the Riemannian symmetric space calling it the Helgason–Gabor–Fourier transform (HGFT). We prove several important properties of HGFT like the reconstruction formula, the Plancherel formula and Parseval formula. Finally, we establish some local uncertainty principle such as Benedicks-type uncertainty principle.


Author(s):  
Raoudha Laffi ◽  
Selma Negzaoui

This paper deals with some formulations of the uncertainty principle associated to generalized Fourier transform [Formula: see text] related to Flensted–Jensen partial differential operators. The aim result is to prove the analogue of Bonami–Demange–Jaming’s theorem : A version of Beurling–Hörmander’s theorem which gives more precision in the form of nonzero functions verifying modified-Beurling’s condition. As application, we get analogous of Gelfand–Schilov’s theorem, Cowling–Price’s theorem and Hardy’s theorem for [Formula: see text].


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Mawardi Bahri ◽  
Ryuichi Ashino

A definition of the two-dimensional quaternion linear canonical transform (QLCT) is proposed. The transform is constructed by substituting the Fourier transform kernel with the quaternion Fourier transform (QFT) kernel in the definition of the classical linear canonical transform (LCT). Several useful properties of the QLCT are obtained from the properties of the QLCT kernel. Based on the convolutions and correlations of the LCT and QFT, convolution and correlation theorems associated with the QLCT are studied. An uncertainty principle for the QLCT is established. It is shown that the localization of a quaternion-valued function and the localization of the QLCT are inversely proportional and that only modulated and shifted two-dimensional Gaussian functions minimize the uncertainty.


2021 ◽  
Vol 24 (3) ◽  
pp. 667-688
Author(s):  
Ramanathan Kamalakkannan ◽  
Rajakumar Roopkumar ◽  
Ahmed Zayed

Abstract In this paper, we introduce a short-time coupled fractional Fourier transform (scfrft) using the kernel of the coupled fractional Fourier transform (cfrft). We then prove that it satisfies Parseval’s relation, derive its inversion and addition formulas, and characterize its range on ℒ 2(ℝ2). We also study its time delay and frequency shift properties and conclude the article by a derivation of an uncertainty principle for both the coupled fractional Fourier transform and short-time coupled fractional Fourier transform.


Sign in / Sign up

Export Citation Format

Share Document