scholarly journals Solving Nonlinear Boundary Value Problems Using the Higher Order Haar Wavelet Method

Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2809
Author(s):  
Mart Ratas ◽  
Jüri Majak ◽  
Andrus Salupere

The current study is focused on development and adaption of the higher order Haar wavelet method for solving nonlinear ordinary differential equations. The proposed approach is implemented on two sample problems—the Riccati and the Liénard equations. The convergence and accuracy of the proposed higher order Haar wavelet method are compared with the widely used Haar wavelet method. The comparison of numerical results with exact solutions is performed. The complexity issues of the higher order Haar wavelet method are discussed.

2020 ◽  
Author(s):  
Jüri Majak ◽  
Mart Ratas ◽  
Kristo Karjust ◽  
Boris Shvartsman

The study is focused on the development, adaption and evaluation of the higher order Haar wavelet method (HOHWM) for solving differential equations. Accuracy and computational complexity are two measurable key characteristics of any numerical method. The HOHWM introduced recently by authors as an improvement of the widely used Haar wavelet method (HWM) has shown excellent accuracy and convergence results in the case of all model problems studied. The practical value of the proposed HOHWM approach is that it allows reduction of the computational cost by several magnitudes as compared to HWM, depending on the mesh and the method parameter values used.


2020 ◽  
Vol 34 ◽  
pp. 03001
Author(s):  
Mehmet Tarık Atay ◽  
Onur Metin Mertaslan ◽  
Musa Kasım Ağca ◽  
Abdülkadir Yılmaz ◽  
Batuhan Toker

In general, there are countless types of problems encountered from different disciplines that can be represented by differential equations. These problems can be solved analytically in simpler cases; however, computational procedures are required for more complicated cases. Right at this point, the wavelet-based methods have been using to compute these kinds of equations in a more effective way. The Haar Wavelet is one of the appropriate methods that belongs to the wavelet family using to solve stiff ordinary differential equations (ODEs). In this study, The Haar Wavelet method is applied to stiff differential problems in order to demonstrate the accuracy and efficacy of this method by comparing the exact solutions. In comparison, similar to the exact solutions, the Haar wavelet method gives adequate results to stiff differential problems.


2020 ◽  
Vol 25 (2) ◽  
pp. 271-288 ◽  
Author(s):  
Mart Ratas ◽  
Andrus Salupere

The recently introduced higher order Haar wavelet method is treated for solving evolution equations. The wave equation, the Burgers’ equations and the Korteweg-de Vries equation are considered as model problems. The detailed analysis of the accuracy of the Haar wavelet method and the higher order Haar wavelet method is performed. The obtained results are validated against the exact solutions.


2018 ◽  
Vol 201 ◽  
pp. 72-78 ◽  
Author(s):  
J. Majak ◽  
M. Pohlak ◽  
K. Karjust ◽  
M. Eerme ◽  
J. Kurnitski ◽  
...  

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gopal Priyadarshi ◽  
B.V. Rathish Kumar

Purpose In the past few years, Haar wavelet-based numerical methods have been applied successfully to solve linear and nonlinear partial differential equations. This study aims to propose a wavelet collocation method based on Haar wavelets to identify a parameter in parabolic partial differential equations (PDEs). As Haar wavelet is defined in a very simple way, implementation of the Haar wavelet method becomes easier than the other numerical methods such as finite element method and spectral method. The computational time taken by this method is very less because Haar matrices and Haar integral matrices are stored once and used for each iteration. In the case of Haar wavelet method, Dirichlet boundary conditions are incorporated automatically. Apart from this property, Haar wavelets are compactly supported orthonormal functions. These properties lead to a huge reduction in the computational cost of the method. Design/methodology/approach The aim of this paper is to reconstruct the source control parameter arises in quasilinear parabolic partial differential equation using Haar wavelet-based numerical method. Haar wavelets possess various properties, for example, compact support, orthonormality and closed form expression. The main difficulty with the Haar wavelet is its discontinuity. Therefore, this paper cannot directly use the Haar wavelet to solve partial differential equations. To handle this difficulty, this paper represents the highest-order derivative in terms of Haar wavelet series and using successive integration this study obtains the required term appearing in the problem. Taylor series expansion is used to obtain the second-order partial derivatives at collocation points. Findings An efficient and accurate numerical method based on Haar wavelet has been proposed for parameter identification in quasilinear parabolic partial differential equations. Numerical results are obtained from the proposed method and compared with the existing results obtained from various finite difference methods including Saulyev method. It is shown that the proposed method is superior than the conventional finite difference methods including Saulyev method in terms of accuracy and CPU time. Convergence analysis is presented to show the accuracy of the proposed method. An efficient algorithm is proposed to find the wavelet coefficients at target time. Originality/value The outcome of the paper would have a valuable role in the scientific community for several reasons. In the current scenario, the parabolic inverse problem has emerged as very important problem because of its application in many diverse fields such as tomography, chemical diffusion, thermoelectricity and control theory. In this paper, higher-order derivative is represented in terms of Haar wavelet series. In other words, we represent the solution in multiscale framework. This would enable us to understand the solution at various resolution levels. In the case of Haar wavelet, this paper can achieve a very good accuracy at very less resolution levels, which ultimately leads to huge reduction in the computational cost.


Sign in / Sign up

Export Citation Format

Share Document