scholarly journals A New Attractive Method in Solving Families of Fractional Differential Equations by a New Transform

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3039
Author(s):  
Ahmad Qazza ◽  
Aliaa Burqan ◽  
Rania Saadeh

In this paper, we use the ARA transform to solve families of fractional differential equations. New formulas about the ARA transform are presented and implemented in solving some applications. New results related to the ARA integral transform of the Riemann-Liouville fractional integral and the Caputo fractional derivative are obtained and the last one is implemented to create series solutions for the target equations. The procedure proposed in this article is mainly based on some theorems of particular solutions and the expansion coefficients of binomial series. In order to achieve the accuracy and simplicity of the new method, some numerical examples are considered and solved. We obtain the solutions of some families of fractional differential equations in a series form and we show how these solutions lead to some important results that include generalizations of some classical methods.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Feng Gao ◽  
Chunmei Chi

In this paper, we made improvement on the conformable fractional derivative. Compared to the original one, the improved conformable fractional derivative can be a better replacement of the classical Riemann-Liouville and Caputo fractional derivative in terms of physical meaning. We also gave the definition of the corresponding fractional integral and illustrated the applications of the improved conformable derivative to fractional differential equations by some examples.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Mohsen Alipour ◽  
Dumitru Baleanu

We present two methods for solving a nonlinear system of fractional differential equations within Caputo derivative. Firstly, we derive operational matrices for Caputo fractional derivative and for Riemann-Liouville fractional integral by using the Bernstein polynomials (BPs). In the first method, we use the operational matrix of Caputo fractional derivative (OMCFD), and in the second one, we apply the operational matrix of Riemann-Liouville fractional integral (OMRLFI). The obtained results are in good agreement with each other as well as with the analytical solutions. We show that the solutions approach to classical solutions as the order of the fractional derivatives approaches 1.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


Author(s):  
Zaid Odibat ◽  
Sunil Kumar

In this paper, we present new ideas for the implementation of homotopy asymptotic method (HAM) to solve systems of nonlinear fractional differential equations (FDEs). An effective computational algorithm, which is based on Taylor series approximations of the nonlinear equations, is introduced to accelerate the convergence of series solutions. The proposed algorithm suggests a new optimal construction of the homotopy that reduces the computational complexity and improves the performance of the method. Some numerical examples are tested to validate and illustrate the efficiency of the proposed algorithm. The obtained results demonstrate the improvement of the accuracy by the new algorithm.


2020 ◽  
Vol 40 (2) ◽  
pp. 227-239
Author(s):  
John R. Graef ◽  
Said R. Grace ◽  
Ercan Tunç

This paper is concerned with the asymptotic behavior of the nonoscillatory solutions of the forced fractional differential equation with positive and negative terms of the form \[^{C}D_{c}^{\alpha}y(t)+f(t,x(t))=e(t)+k(t)x^{\eta}(t)+h(t,x(t)),\] where \(t\geq c \geq 1\), \(\alpha \in (0,1)\), \(\eta \geq 1\) is the ratio of positive odd integers, and \(^{C}D_{c}^{\alpha}y\) denotes the Caputo fractional derivative of \(y\) of order \(\alpha\). The cases \[y(t)=(a(t)(x^{\prime}(t))^{\eta})^{\prime} \quad \text{and} \quad y(t)=a(t)(x^{\prime}(t))^{\eta}\] are considered. The approach taken here can be applied to other related fractional differential equations. Examples are provided to illustrate the relevance of the results obtained.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 360 ◽  
Author(s):  
Dumitru Baleanu ◽  
Arran Fernandez ◽  
Ali Akgül

The Caputo fractional derivative has been one of the most useful operators for modelling non-local behaviours by fractional differential equations. It is defined, for a differentiable function f ( t ) , by a fractional integral operator applied to the derivative f ′ ( t ) . We define a new fractional operator by substituting for this f ′ ( t ) a more general proportional derivative. This new operator can also be written as a Riemann–Liouville integral of a proportional derivative, or in some important special cases as a linear combination of a Riemann–Liouville integral and a Caputo derivative. We then conduct some analysis of the new definition: constructing its inverse operator and Laplace transform, solving some fractional differential equations using it, and linking it with a recently described bivariate Mittag-Leffler function.


Sign in / Sign up

Export Citation Format

Share Document