scholarly journals An Ideal-Based Dot Total Graph of a Commutative Ring

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3072
Author(s):  
Mohammad Ashraf ◽  
Jaber H. Asalool ◽  
Abdulaziz M. Alanazi ◽  
Ahmed Alamer

In this paper, we introduce and investigate an ideal-based dot total graph of commutative ring R with nonzero unity. We show that this graph is connected and has a small diameter of at most two. Furthermore, its vertex set is divided into three disjoint subsets of R. After that, connectivity, clique number, and girth have also been studied. Finally, we determine the cases when it is Eulerian, Hamiltonian, and contains a Eulerian trail.

2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


2014 ◽  
Vol 21 (02) ◽  
pp. 249-256 ◽  
Author(s):  
G. Aalipour ◽  
S. Akbari ◽  
M. Behboodi ◽  
R. Nikandish ◽  
M. J. Nikmehr ◽  
...  

Let R be a commutative ring and 𝔸(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸(R)\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). Here, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and ω (𝔸𝔾(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings whose annihilating-ideal graphs are complete or bipartite.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


2015 ◽  
Vol 14 (10) ◽  
pp. 1550107 ◽  
Author(s):  
S. Akbari ◽  
S. Khojasteh ◽  
A. Yousefzadehfard

Let R be a commutative ring with nonzero identity. The Jacobson graph of R denoted by 𝔍R is a graph with the vertex set R\J(R), and two distinct vertices x, y ∈ V(𝔍R) are adjacent if and only if 1 - xy ∉ U(R), where U(R) is the set of all unit elements of R. Let ω(𝔍R) denote the clique number of 𝔍R. It was conjectured that if [Formula: see text] is a commutative finite ring and (Ri, 𝔪i) is a local ring, for i = 1, …, n, then [Formula: see text], where Fi = Ri/𝔪i, for i = 1, …, n. In this paper, we prove that if R is a commutative ring (not necessarily finite) and R is not a field, then ω(𝔍R) = max 𝔪∈ Max (R) |𝔪| and using this we show that the aforementioned conjecture holds.


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Ch. Eslahchi ◽  
A. M. Rahimi

The concept of the zero-divisor graph of a commutative ring has been studied by many authors, and thek-zero-divisor hypergraph of a commutative ring is a nice abstraction of this concept. Though some of the proofs in this paper are long and detailed, any reader familiar with zero-divisors will be able to read through the exposition and find many of the results quite interesting. LetRbe a commutative ring andkan integer strictly larger than2. Ak-uniform hypergraphHk(R)with the vertex setZ(R,k), the set of allk-zero-divisors inR, is associated toR, where eachk-subset ofZ(R,k)that satisfies thek-zero-divisor condition is an edge inHk(R). It is shown that ifRhas two prime idealsP1andP2with zero their only common point, thenHk(R)is a bipartite (2-colorable) hypergraph with partition setsP1−Z′andP2−Z′, whereZ′is the set of all zero divisors ofRwhich are notk-zero-divisors inR. IfRhas a nonzero nilpotent element, then a lower bound for the clique number ofH3(R)is found. Also, we have shown thatH3(R)is connected with diameter at most 4 wheneverx2≠0for all3-zero-divisorsxofR. Finally, it is shown that for any finite nonlocal ringR, the hypergraphH3(R)is complete if and only ifRis isomorphic toZ2×Z2×Z2.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Tongsuo Wu ◽  
Meng Ye ◽  
Dancheng Lu ◽  
Houyi Yu

We study the co maximal graph Ω(R), the induced subgraph Γ(R) of Ω(R) whose vertex set is R∖(U(R)∪J(R)), and a retract Γr(R) of Γ(R), where R is a commutative ring. For a graph Γ(R) which contains a cycle, we show that the core of Γ(R) is a union of triangles and rectangles, while a vertex in Γ(R) is either an end vertex or a vertex in the core. For a nonlocal ring R, we prove that both the chromatic number and clique number of Γ(R) are identical with the number of maximal ideals of R. A graph Γr(R) is also introduced on the vertex set {Rx∣x∈R∖(U(R)∪J(R))}, and graph properties of Γr(R) are studied.


2018 ◽  
Vol 10 (03) ◽  
pp. 1850038 ◽  
Author(s):  
F. Heydari

Let [Formula: see text] be a commutative ring and [Formula: see text] be an [Formula: see text]-module, and let [Formula: see text] be the set of all nontrivial ideals of [Formula: see text]. The [Formula: see text]-intersection graph of ideals of [Formula: see text], denoted by [Formula: see text], is a graph with the vertex set [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. For every multiplication [Formula: see text]-module [Formula: see text], the diameter and the girth of [Formula: see text] are determined. Among other results, we prove that if [Formula: see text] is a faithful [Formula: see text]-module and the clique number of [Formula: see text] is finite, then [Formula: see text] is a semilocal ring. We denote the [Formula: see text]-intersection graph of ideals of the ring [Formula: see text] by [Formula: see text], where [Formula: see text] are integers and [Formula: see text] is a [Formula: see text]-module. We determine the values of [Formula: see text] and [Formula: see text] for which [Formula: see text] is perfect. Furthermore, we derive a sufficient condition for [Formula: see text] to be weakly perfect.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250198 ◽  
Author(s):  
T. TAMIZH CHELVAM ◽  
T. ASIR

Let R be a commutative ring and Z(R) be its set of all zero-divisors. Anderson and Badawi [The total graph of a commutative ring, J. Algebra320 (2008) 2706–2719] introduced the total graph of R, denoted by TΓ(R), as the undirected graph with vertex set R, and two distinct vertices x and y are adjacent if and only if x + y ∈ Z(R). Tamizh Chelvam and Asir [Domination in the total graph of a commutative ring, to appear in J. Combin. Math. Combin. Comput.] obtained the domination number of the total graph and studied certain other domination parameters of TΓ(R) where R is a commutative Artin ring. The intersection graph of gamma sets in TΓ(R) is denoted by ITΓ(R). Tamizh Chelvam and Asir [Intersection graph of gamma sets in the total graph, Discuss. Math. Graph Theory32 (2012) 339–354, doi:10.7151/dmgt.1611] initiated a study about the intersection graph ITΓ (ℤn) of gamma sets in TΓ(ℤn). In this paper, we study about ITΓ(R), where R is a commutative Artin ring. Actually we investigate the interplay between graph-theoretic properties of ITΓ(R) and ring-theoretic properties of R. At the first instance, we prove that diam (ITΓ(R)) ≤ 2 and gr (ITΓ(R)) ≤ 4. Also some characterization results regarding completeness, bipartite, cycle and chordal nature of ITΓ(R) are given. Further, we discuss about the vertex-transitive property of ITΓ(R). At last, we obtain all commutative Artin rings R for which ITΓ(R) is either planar or toroidal or genus two.


2014 ◽  
Vol 96 (3) ◽  
pp. 289-302 ◽  
Author(s):  
M. AFKHAMI ◽  
Z. BARATI ◽  
K. KHASHYARMANESH ◽  
N. PAKNEJAD

AbstractLet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}R$ be a commutative ring, $I(R)$ be the set of all ideals of $R$ and $S$ be a subset of $I^*(R)=I(R)\setminus \{0\}$. We define a Cayley sum digraph of ideals of $R$, denoted by $\overrightarrow{\mathrm{Cay}}^+ (I(R),S)$, as a directed graph whose vertex set is the set $I(R)$ and, for every two distinct vertices $I$ and $J$, there is an arc from $I$ to $J$, denoted by $I\longrightarrow J$, whenever $I+K=J$, for some ideal $K $ in $S$. Also, the Cayley sum graph $ \mathrm{Cay}^+ (I(R), S)$ is an undirected graph whose vertex set is the set $I(R)$ and two distinct vertices $I$ and $J$ are adjacent whenever $I+K=J$ or $J+K=I$, for some ideal $K $ in $ S$. In this paper, we study some basic properties of the graphs $\overrightarrow{\mathrm{Cay}}^+ (I(R),S)$ and $ \mathrm{Cay}^+ (I(R), S)$ such as connectivity, girth and clique number. Moreover, we investigate the planarity, outerplanarity and ring graph of $ \mathrm{Cay}^+ (I(R), S)$ and also we provide some characterization for rings $R$ whose Cayley sum graphs have genus one.


Sign in / Sign up

Export Citation Format

Share Document