scholarly journals Lipopolysaccharides from Commensal and Opportunistic Bacteria: Characterization and Response of the Immune System of the Host Sponge Suberites domuncula

Marine Drugs ◽  
2015 ◽  
Vol 13 (8) ◽  
pp. 4985-5006 ◽  
Author(s):  
Johan Gardères ◽  
Gilles Bedoux ◽  
Vasiliki Koutsouveli ◽  
Sterenn Crequer ◽  
Florie Desriac ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Ragnhild Inderberg Vestrum ◽  
Torunn Forberg ◽  
Birgit Luef ◽  
Ingrid Bakke ◽  
Per Winge ◽  
...  

The roles of host-associated bacteria have gained attention lately, and we now recognise that the microbiota is essential in processes such as digestion, development of the immune system and gut function. In this study, Atlantic cod larvae were reared under germ-free, gnotobiotic and conventional conditions. Water and fish microbiota were characterised by 16S rRNA gene analyses. The cod larvae’s transcriptional responses to the different microbial conditions were analysed by a custom Agilent 44 k oligo microarray. Gut development was assessed by transmission electron microscopy (TEM). Water and fish microbiota differed significantly in the conventional treatment and were dominated by different fast-growing bacteria. Our study indicates that components of the innate immune system of cod larvae are downregulated by the presence of non-pathogenic bacteria, and thus may be turned on by default in the early larval stages. We see indications of decreased nutrient uptake in the absence of bacteria. The bacteria also influence the gut morphology, reflected in shorter microvilli with higher density in the conventional larvae than in the germ-free larvae. The fact that the microbiota alters innate immune responses and gut morphology demonstrates its important role in marine larval development.


2014 ◽  
Vol 222 (3) ◽  
pp. 148-153 ◽  
Author(s):  
Sabine Vits ◽  
Manfred Schedlowski

Associative learning processes are one of the major neuropsychological mechanisms steering the placebo response in different physiological systems and end organ functions. Learned placebo effects on immune functions are based on the bidirectional communication between the central nervous system (CNS) and the peripheral immune system. Based on this “hardware,” experimental evidence in animals and humans showed that humoral and cellular immune functions can be affected by behavioral conditioning processes. We will first highlight and summarize data documenting the variety of experimental approaches conditioning protocols employed, affecting different immunological functions by associative learning. Taking a well-established paradigm employing a conditioned taste aversion model in rats with the immunosuppressive drug cyclosporine A (CsA) as an unconditioned stimulus (US) as an example, we will then summarize the efferent and afferent communication pathways as well as central processes activated during a learned immunosuppression. In addition, the potential clinical relevance of learned placebo effects on the outcome of immune-related diseases has been demonstrated in a number of different clinical conditions in rodents. More importantly, the learned immunosuppression is not restricted to experimental animals but can be also induced in humans. These data so far show that (i) behavioral conditioned immunosuppression is not limited to a single event but can be reproduced over time, (ii) immunosuppression cannot be induced by mere expectation, (iii) psychological and biological variables can be identified as predictors for this learned immunosuppression. Together with experimental approaches employing a placebo-controlled dose reduction these data provide a basis for new therapeutic approaches to the treatment of diseases where a suppression of immune functions is required via modulation of nervous system-immune system communication by learned placebo effects.


Sign in / Sign up

Export Citation Format

Share Document