scholarly journals Modifying Cellulose Acetate Mixed-Matrix Membranes for Improved Oil–Water Separation: Comparison between Sodium and Organo-Montmorillonite as Particle Additives

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 80
Author(s):  
Micah Belle Marie Yap Ang ◽  
Kiara Pauline O. Devanadera ◽  
Alyssa Nicole R. Duena ◽  
Zheng-Yen Luo ◽  
Yu-Hsuan Chiao ◽  
...  

In this study, cellulose acetate (CA) mixed-matrix membranes were fabricated through the wet-phase inversion method. Two types of montmorillonite (MMT) nanoclay were embedded separately: sodium montmorillonite (Na-MMT) and organo-montmorillonite (O-MMT). Na-MMT was converted to O-MMT through ion exchange reaction using cationic surfactant (dialkyldimethyl ammonium chloride, DDAC). Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) compared the chemical structure and composition of the membranes. Embedding either Na-MMT and O-MMT did not change the crystallinity of the CA membrane, indicating that the nanoclays were dispersed in the CA matrix. Furthermore, nanoclays improved the membrane hydrophilicity. Compared with CANa-MMT membrane, CAO-MMT membrane had a higher separation efficiency and antifouling property. At the optimum concentration of O-MMT in the CA matrix, the pure water flux reaches up to 524.63 ± 48.96 L∙m−2∙h−1∙bar−1 with over 95% rejection for different oil-in-water emulsion (diesel, hexane, dodecane, and food-oil). Furthermore, the modified membrane delivered an excellent antifouling property.

2014 ◽  
Vol 70 (2) ◽  
Author(s):  
R. Saranya ◽  
Y. Lukka Thuyavan ◽  
G. Arthanareeswaran

The influence of adsorbents like activated carbon (AC) and iron oxide nanoparticles (IO) on the filtration efficiency of polymeric ultrafiltration (UF) membranes is proposed to investigate by incorporating them in wt % of 0.25, 1.5 and 2.5 with cellulose acetate (CA). The completely homogenous CA/AC and CA/IO casting solutions were obtained by sonicating AC and IO, respectively in N, N’-dimethyl formamide (DMF) followed by mechanical stirring with CA. By dry/wet phase inversion technique, novel CA mixed matrix membranes (MMMs) were synthesized which were later evaluated for their characteristics using atomic force microscope (AFM), field emission scanning electron microscope (FESEM) and X-ray diffractometer (XRD). In comparison to the neat CA membrane, pure water flux of CA MMMs containing 2.5 wt % AC and 0.5 wt % IP were increased from 5.61 Lm-2h-1 to 11.22 and 7.17 Lm-2h-1, respectively. These results suggest that the higher addition of AC influenced the membrane permeability whereas the amount of IP is found not to be surpassed beyond 0.5 wt% for improved flux. The wettability found by contact angle analysis suggests the higher productivity of CA MMMs and are evident by the adsorption nature of the chosen fillers. The polymer enhanced UF studies for rejecting COD, BOD and dissolved salts from the textile industry effluent has also been performed. The significance of CA MMMs lies on higher rejection efficiency with no compromise in membrane permeability.


2017 ◽  
Vol 18 (1) ◽  
Author(s):  
G. P. Syed Ibrahim ◽  
Arun M. Isloor ◽  
Amir Al Ahmed ◽  
B. Lakshmi

Mixed matrix membranes (MMMs) of Polysulfone (PSf)-Zeolite ZSM-5 (ZZSM-5) were prepared by phase inversion method with a dose ranging from 1.0 to 4.0 Wt. % with polyvinylpyrrolidone (PVP) as the fore forming agent. The prepared mixed matrix membranes were scrutinized for their permeation, hydrophilicity and anti-fouling nature. Characterization of the membrane was carried out by Electrokinetic analyzer. The heavy metal ions rejection experiment has been carried out and the results manifested that, the PZM-4 membrane exhibits higher pure water flux of 348.88 L/m2 h, contact angle of 72.7o and the heavy meals rejection of Pb2+ (98.54%) and of Cd2+ (95.32%) ions. Taken as a whole, the modified PSf-ZZSM-5 ultrafiltration membranes are the attractive candidate for the water treatment.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 96
Author(s):  
Huali Tian ◽  
Xing Wu ◽  
Kaisong Zhang

Tight ultrafiltration (TUF) membranes with high performance have attracted more and more attention in the separation of organic molecules. To improve membrane performance, some methods such as interface polymerization have been applied. However, these approaches have complex operation procedures. In this study, a polydopamine (PDA) modified MoS2 (MoS2@PDA) blending polyethersulfone (PES) membrane with smaller pore size and excellent selectivity was fabricated by a simple phase inversion method. The molecular weight cut-off (MWCO) of as-prepared MoS2@PDA mixed matrix membranes (MMMs) changes, and the effective separation of dye molecules in MoS2@PDA MMMs with different concentrations were obtained. The addition amount of MoS2@PDA increased from 0 to 4.5 wt %, resulting in a series of membranes with the MWCO values of 7402.29, 7007.89, 5803.58, 5589.50, 6632.77, and 6664.55 Da. The MWCO of the membrane M3 (3.0 wt %) was the lowest, the pore size was defined as 2.62 nm, and the pure water flux was 42.0 L m−2 h−1 bar−1. The rejection of Chromotrope 2B (C2B), Reactive Blue 4 (RB4), and Janus Green B (JGB) in aqueous solution with different concentrations of dyes was better than that of unmodified membrane. The separation effect of M3 and M0 on JGB at different pH values was also investigated. The rejection rate of M3 to JGB was higher than M0 at different pH ranges from 3 to 11. The rejection of M3 was 98.17–99.88%. When pH was 11, the rejection of membranes decreased with the extension of separation time. Specifically, at 180 min, the rejection of M0 and M3 dropped to 77.59% and 88.61%, respectively. In addition, the membrane had a very low retention of salt ions, Nacl 1.58%, Na2SO4 10.52%, MgSO4 4.64%, and MgCl2 1.55%, reflecting the potential for separating salts and dyes of MoS2@PDA/PES MMMs.


2021 ◽  
Vol 11 (2) ◽  
pp. 313-330
Author(s):  
Ovaid Mehmood ◽  
Sarah Farrukh ◽  
Arshad Hussain ◽  
Mohammad Younas ◽  
Zarrar Salahuddin ◽  
...  

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 393
Author(s):  
Tanzila Anjum ◽  
Rahma Tamime ◽  
Asim Laeeq Khan

High-performance Mixed-Matrix Membranes (MMMs) comprising of two kinds of porous fillers UiO-66 and Zeolite 4Aand their combination were fabricated with polysulfone (PSf) polymer matrix. For the very first time, UiO-66 and Zeolite 4A were jointly used as nanofillers in MMMs with the objective of complimenting synergistic effects. The individual and complimentary effects of nanofillers were investigated on membrane morphology and performance, pure water flux, humic acid rejection, static humic acid adsorption, and antifouling properties of membranes. Scanning Electron Microscopy (SEM) analysis of membranes confirmed that all MMMs possessed wider macrovoids with higher nanofiller loadings than neat PSf membranes and the MMMs (PSf/UiO-66 and PSf/Zeolite 4A-UiO-66) showed tendency of agglomeration with high nanofiller loadings (1 wt% and 2 wt%). All MMMs exhibited better hydrophilicity and lower static humic acid adsorption than neat PSf membranes. Pure water flux of MMMs was higher than neat PSf membranes but the tradeoff between permeability and selectivity was witnessed in the MMMs with single nanofiller. However, MMMs with combined nanofillers (PSf/Zeolite 4A-UiO-66) showed no such tradeoff, and an increase in both permeability and selectivity was achieved. All MMMs with lower nanofiller loadings (0.5 wt% and 1 wt%) showed improved flux recovery. PSf/Zeolite 4A-UiO-66 (0.5 wt%) membranes showed the superior antifouling properties without sacrificing permeability and selectivity.


2019 ◽  
Vol 74 (3) ◽  
pp. 821-828 ◽  
Author(s):  
M. Hamza Rashid ◽  
Sarah Farrukh ◽  
Sofia Javed ◽  
Arshad Hussain ◽  
X. Fan ◽  
...  

2019 ◽  
Vol 81 (3) ◽  
Author(s):  
Yanuardi Raharjo ◽  
Mochamad Zakki Fahmi ◽  
Siti Wafiroh ◽  
Alfa Akustia Widati ◽  
Eviomitta Rizki Amanda ◽  
...  

Polyethersulfon (PES) membrane has been widely used in the biomedical field especially in hemodialysis application. Many modifications of membranes have been applied into hemodialysis such as diffusion, adsorption, and mixed-matrix membrane. The main problem of those membranes is less selectivity to attract the uremic toxins. In this study, we report the modification of PES mixed with cellulose acetate (PES/CA) membrane as mixed-matrix membrane (MMM) using imprinted-zeolite (PES/CA/IZC) in order to increase the selectivity for targeted analyte. The hollow fibre membranes (HFM) were fabricated by dry-wet spinning technique. The successful zeolite A synthesised and was characterised by x-ray diffraction (XRD). The mixed-matrix membranes were characterised in terms of morphology using scanning electron microscopy (SEM), water contact angle (WCA), pure water flux (PWF), clearance of creatinine (CC), and BSA adsorption. In accordance with the results of characterisation, the synthesis of zeolite A, and imprinted-zeolite creatinine was successfully fabricated. The SEM results showed that the PES/CA/IZC membrane has uniform pores and fingerlike structure. The same result was obtained for PES/CA membrane, but not for PES/CA/ZA membrane. The WCA of the PES/CA; PES/CA/ZA; and PES/CA/IZC were 85.63; 84.98; and 77.53 (o), respectively. While the PWF were 22.84; 27.57, and 40.52 (Lm-2h-1), respectively. The addition of imprinted-zeolite into the membrane improved creatinine removal up to 74.99%. It showed that PES/CA/IZC has succeeded in increasing the selectivity of membranes to attract the creatinine as target analyte. Compared to the PES/CA, the creatinine clearance of membranes improved and increased up to 5.2%. For protein rejection, the PES/CA/IZC rejected 79.05% of bovine serum albumin (BSA). Based on these results, it can be concluded that PES/CA/IZC can be considered as hemodialysis membranes.


2019 ◽  
Vol 66 (9) ◽  
pp. 1165-1171 ◽  
Author(s):  
Madhan Vinu ◽  
Souvik Pal ◽  
Jia‐Dian Chen ◽  
Yi‐Feng Lin ◽  
Yu‐Lun Lai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document