scholarly journals Effective Perturbations of the Amplitude, Gating, and Hysteresis of IK(DR) Caused by PT-2385, an HIF-2α Inhibitor

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 636
Author(s):  
Hung-Tsung Hsiao ◽  
Guan-Ling Lu ◽  
Yen-Chin Liu ◽  
Sheng-Nan Wu

PT-2385 is currently regarded as a potent and selective inhibitor of hypoxia-inducible factor-2α (HIF-2α), with potential antineoplastic activity. However, the membrane ion channels changed by this compound are obscure, although it is reasonable to assume that the compound might act on surface membrane before entering the cell´s interior. In this study, we intended to explore whether it and related compounds make any adjustments to the plasmalemmal ionic currents of pituitary tumor (GH3) cells and human 13-06-MG glioma cells. Cell exposure to PT-2385 suppressed the peak or late amplitude of delayed-rectifier K+ current (IK(DR)) in a time- and concentration-dependent manner, with IC50 values of 8.1 or 2.2 µM, respectively, while the KD value in PT-2385-induced shortening in the slow component of IK(DR) inactivation was estimated to be 2.9 µM. The PT-2385-mediated block of IK(DR) in GH3 cells was little-affected by the further application of diazoxide, cilostazol, or sorafenib. Increasing PT-2385 concentrations shifted the steady-state inactivation curve of IK(DR) towards a more hyperpolarized potential, with no change in the gating charge of the current, and also prolonged the time-dependent recovery of the IK(DR) block. The hysteretic strength of IK(DR) elicited by upright or inverted isosceles-triangular ramp voltage was decreased during exposure to PT-2385; meanwhile, the activation energy involved in the gating of IK(DR) elicitation was noticeably raised in its presence. Alternatively, the presence of PT-2385 in human 13-06-MG glioma cells effectively decreased the amplitude of IK(DR). Considering all of the experimental results together, the effects of PT-2385 on ionic currents demonstrated herein could be non-canonical and tend to be upstream of the inhibition of HIF-2α. This action therefore probably contributes to down-streaming mechanisms through the changes that it or other structurally resemblant compounds lead to in the perturbations of the functional activities of pituitary cells or neoplastic astrocytes, in the case that in vivo observations occur.

2020 ◽  
Vol 21 (12) ◽  
pp. 4260
Author(s):  
Ming-Huan Chan ◽  
Hwei-Hsien Chen ◽  
Yi-Ching Lo ◽  
Sheng-Nan Wu

Background: Honokiol (HNK), a dimer of allylphenol obtained from the bark of Magnolia officinalis was demonstrated to exert an array of biological actions in different excitable cell types. However, whether or how this compound can lead to any perturbations on surface–membrane ionic currents remains largely unknown. Methods: We used the patch clamp method and found that addition of HNK effectively depressed the density of macroscopic hyperpolarization-activated cation currents (Ih) in pituitary GH3 cells in a concentration-, time- and voltage-dependent manner. By the use of a two-step voltage protocol, the presence of HNK (10 μM) shifted the steady-state activation curve of Ih density along the voltage axis to a more negative potential by approximately 11 mV, together with no noteworthy modification in the gating charge of the current. Results: The voltage-dependent hysteresis of Ih density elicited by long-lasting triangular ramp pulse was attenuated by the presence of HNK. The HNK addition also diminished the magnitude of deactivating Ih density elicited by ramp-up depolarization with varying durations. The effective half-maximal concentration (IC50) value needed to inhibit the density of Ih or delayed rectifier K+ current identified in GH3 cells was estimated to be 2.1 or 6.8 μM, respectively. In cell-attached current recordings, HNK decreased the frequency of spontaneous action currents. In Rolf B1.T olfactory sensory neurons, HNK was also observed to decrease Ih density in a concentration-dependent manner. Conclusions: The present study highlights the evidence revealing that HNK has the propensity to perturb these ionic currents and that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is proposed to be a potential target for the in vivo actions of HNK and its structurally similar compounds.


2020 ◽  
Vol 21 (7) ◽  
pp. 2416 ◽  
Author(s):  
Te-Ling Lu ◽  
Te-Jung Lu ◽  
Sheng-Nan Wu

Cilobradine (CIL, DK-AH269), an inhibitor of hyperpolarization-activated cation current (Ih), has been observed to possess pro-arrhythmic properties. Whether and how CIL is capable of perturbing different types of membrane ionic currents existing in electrically excitable cells, however, is incompletely understood. In this study, we intended to examine possible modifications by it or other structurally similar compounds of ionic currents in pituitary tumor (GH3) cells and in heart-derived H9c2 cells. The standard whole-cell voltage-clamp technique was performed to examine the effect of CIL on ionic currents. GH3-cell exposure to CIL suppressed the density of hyperpolarization-evoked Ih in a concentration-dependent manner with an effective IC50 of 3.38 μM. Apart from its increase in the activation time constant of Ih during long-lasting hyperpolarization, the presence of CIL (3 μM) distinctly shifted the steady-state activation curve of Ih triggered by a 2-s conditioning pulse to a hyperpolarizing direction by 10 mV. As the impedance-frequency relation of Ih was studied, its presence raised the impedance magnitude at the resonance frequency induced by chirp voltage. CIL also suppressed delayed-rectifier K+ current (IK(DR)) followed by the accelerated inactivation time course of this current, with effective IC50 (measured at late IK(DR)) or KD value of 3.54 or 3.77 μM, respectively. As the CIL concentration increased 1 to 3 μM, the inactivation curve of IK(DR) elicited by 1- or 10-s conditioning pulses was shifted to a hyperpolarizing potential by approximately 10 mV, and the recovery of IK(DR) inactivation during its presence was prolonged. The peak Na+ current (INa) during brief depolarization was resistant to being sensitive to the presence of CIL, yet to be either decreased by subsequent addition of A-803467 or enhanced by that of tefluthrin. In cardiac H9c2 cells, unlike the CIL effect, the addition of either ivabradine or zatebradine mildly led to a lowering in IK(DR) amplitude with no conceivable change in the inactivation time course of the current. Taken together, the compound like CIL, which was tailored to block hyperpolarization-activated cation (HCN) channels effectively, was also capable of altering the amplitude and gating of IK(DR), thereby influencing the functional activities of electrically excitable cells, such as GH3 cells.


1985 ◽  
Vol 248 (1) ◽  
pp. E15-E19
Author(s):  
I. S. Login ◽  
A. M. Judd ◽  
M. J. Cronin ◽  
T. Yasumoto ◽  
R. M. MacLeod

Reserpine exerts direct effects on several tissues, including inhibition of hormone release from rat anterior pituitary cells. To test the hypothesis that reserpine may be acting as a calcium channel antagonist, normal or GH3 rat anterior pituitary cells were preincubated in reserpine or the conventional calcium channel blocker, D-600, followed by exposure to 45Ca2+ together with stimulants of calcium uptake: maitotoxin, a potent calcium channel activator; A23187, a calcium ionophore; or 50 mMK+. After incubation, the cells were harvested by vacuum filtration and cell-associated radioactivity determined. In normal cells, reserpine blocked both basal and K+-stimulated calcium uptake. Reserpine selectively blocked maitotoxin but not A23187-induced calcium uptake. In GH3 cells 9 microM reserpine and 30 microM D-600 were equally effective in blocking maitotoxin-stimulated calcium uptake. Reserpine appears to block voltage-dependent calcium channels in pituitary cells in a concentration-dependent manner but not calcium uptake caused nonspecifically by A23187.


1999 ◽  
Vol 277 (3) ◽  
pp. H1081-H1088 ◽  
Author(s):  
Hui-Zhen Wang ◽  
Hong Shi ◽  
Shu-Jie Liao ◽  
Zhiguo Wang

We have previously found that nicotine blocked multiple K+ currents, including the rapid component of delayed rectifier K+ currents ( I Kr), by interacting directly with the channels. To shed some light on the mechanisms of interaction between nicotine and channels, we performed detailed analysis on the human ether-à-go-go-related gene (HERG) channels, which are believed to be equivalent to the native I Kr when expressed in Xenopus oocytes. Nicotine suppressed the HERG channels in a concentration-dependent manner with greater potency with voltage protocols, which favor channel inactivation. Nicotine caused dramatic shifts of the voltage-dependent inactivation curve to more negative potentials and accelerated the inactivation process. Conversely, maneuvers that weakened the channel inactivation gating considerably relieved the blockade. Elevating the extracellular K+ concentration from 5 to 20 mM increased the nicotine concentration (by ∼100-fold) needed to achieve the same degree of inhibition. Moreover, nicotine lost its ability to block the HERG channels when a single mutation was introduced to a residue located after transmembrane domain 6 (S631A) to remove the rapid channel inactivation. Our data suggest that the inactivation gating determines nicotine blockade of the HERG channels.


2017 ◽  
Vol 41 (5) ◽  
pp. 2053-2066 ◽  
Author(s):  
Edmund Cheung So ◽  
Sheng-Nan Wu ◽  
Ping-Ching Wu ◽  
Hui-Zhen  Chen ◽  
Chia-Jung Yang

Background: Artemisinin (ART) is an anti-malarial agent reported to influence endocrine function. Methods: Effects of ART on ionic currents and action potentials (APs) in pituitary tumor (GH3) cells were evaluated by patch clamp techniques. Results: ART inhibited the amplitude of delayed-rectifier K+ current (IK(DR)) in response to membrane depolarization and accelerated the process of current inactivation. It exerted an inhibitory effect on IK(DR) with an IC50 value of 11.2 µM and enhanced IK(DR) inactivation with a KD value of 14.7 µM. The steady-state inactivation curve of IK(DR) was shifted to hyperpolarization by 10 mV. Pretreatment of chlorotoxin (1 µM) or iloprost (100 nM) did not alter the magnitude of ART-induced inhibition of IK(DR) in GH3 cells. ART also decreased the peak amplitude of voltage-gated Na+ current (INa) with a concentration-dependent slowing in inactivation rate. Application of KMUP-1, an inhibitor of late INa, was effective at reversing ART-induced prolongation in inactivation time constant of INa. Under current-clamp recordings, ART alone reduced the amplitude of APs and prolonged the duration of APs. Conclusion: Under ART exposure, the inhibitory actions on both IK(DR) and INa could be a potential mechanisms through which this drug influences membrane excitability of endocrine or neuroendocrine cells appearing in vivo.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 188
Author(s):  
Te-Ling Lu ◽  
Zi-Han Gao ◽  
Shih-Wei Li ◽  
Sheng-Nan Wu

GAL-021 has recently been developed as a novel breathing control modulator. However, modifications of ionic currents produced by this agent remain uncertain, although its efficacy in suppressing the activity of big-conductance Ca2+-activated K+ (BKCa) channels has been reported. In pituitary tumor (GH3) cells, we found that the presence of GAL-021 decreased the amplitude of macroscopic Ca2+-activated K+ current (IK(Ca)) in a concentration-dependent manner with an effective IC50 of 2.33 μM. GAL-021-mediated reduction of IK(Ca) was reversed by subsequent application of verteporfin or ionomycin; however, it was not by that of diazoxide. In inside-out current recordings, the addition of GAL-021 to the bath markedly decreased the open-state probability of BKCa channels. This agent also resulted in a rightward shift in voltage dependence of the activation curve of BKCa channels; however, neither the gating charge of the curve nor single-channel conductance of the channel was changed. There was an evident lengthening of the mean closed time of BKCa channels in the presence of GAL-021, with no change in mean open time. The GAL-021 addition also suppressed M-type K+ current with an effective IC50 of 3.75 μM; however, its presence did not alter the amplitude of erg-mediated K+ current, or mildly suppressed delayed-rectifier K+ current. GAL-021 at a concentration of 30 μM could also suppress hyperpolarization-activated cationic current. In HEK293T cells expressing α-hSlo, the addition of GAL-021 was also able to suppress the BKCa-channel open probabilities, and GAL-021-mediated suppression of BKCa-channel activity was attenuated by further addition of BMS-191011. Collectively, the GAL-021 effects presented herein do not exclusively act on BKCa channels and these modifications on ionic currents exert significant influence on the functional activities of electrically excitable cells occurring in vivo.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1146
Author(s):  
Tzu-Hsien Chuang ◽  
Hsin-Yen Cho ◽  
Sheng-Nan Wu

Apocynin (aPO, 4′-Hydroxy-3′-methoxyacetophenone) is a cell-permeable, anti-inflammatory phenolic compound that acts as an inhibitor of NADPH-dependent oxidase (NOX). However, the mechanisms through which aPO can interact directly with plasmalemmal ionic channels to perturb the amplitude or gating of ionic currents in excitable cells remain incompletely understood. Herein, we aimed to investigate any modifications of aPO on ionic currents in pituitary GH3 cells or murine HL-1 cardiomyocytes. In whole-cell current recordings, GH3-cell exposure to aPO effectively stimulated the peak and late components of voltage-gated Na+ current (INa) with different potencies. The EC50 value of aPO required for its differential increase in peak or late INa in GH3 cells was estimated to be 13.2 or 2.8 μM, respectively, whereas the KD value required for its retardation in the slow component of current inactivation was 3.4 μM. The current–voltage relation of INa was shifted slightly to more negative potential during cell exposure to aPO (10 μM); however, the steady-state inactivation curve of the current was shifted in a rightward direction in its presence. Recovery of peak INa inactivation was increased in the presence of 10 μM aPO. In continued presence of aPO, further application of rufinamide or ranolazine attenuated aPO-stimulated INa. In methylglyoxal- or superoxide dismutase-treated cells, the stimulatory effect of aPO on peak INa remained effective. By using upright isosceles-triangular ramp pulse of varying duration, the amplitude of persistent INa measured at low or high threshold was enhanced by the aPO presence, along with increased hysteretic strength appearing at low or high threshold. The addition of aPO (10 μM) mildly inhibited the amplitude of erg-mediated K+ current. Likewise, in HL-1 murine cardiomyocytes, the aPO presence increased the peak amplitude of INa as well as decreased the inactivation or deactivation rate of the current, and further addition of ranolazine or esaxerenone attenuated aPO-accentuated INa. Altogether, this study provides a distinctive yet unidentified finding that, despite its effectiveness in suppressing NOX activity, aPO may directly and concertedly perturb the amplitude, gating and voltage-dependent hysteresis of INa in electrically excitable cells. The interaction of aPO with ionic currents may, at least in part, contribute to the underlying mechanisms through which it affects neuroendocrine, endocrine or cardiac function.


2019 ◽  
Vol 21 (1) ◽  
pp. 117 ◽  
Author(s):  
Chih-Sheng Yang ◽  
Ming-Chi Lai ◽  
Ping-Yen Liu ◽  
Yi-Ching Lo ◽  
Chin-Wei Huang ◽  
...  

Gastrodigenin (HBA) and gastrodin (GAS) are phenolic ingredients found in Gastrodia elata Blume (GEB), a traditional Chinese herbal medicine. These compounds have been previously used to treat cognitive dysfunction, convulsion, and dizziness. However, at present, there is no available information regarding their potential ionic effects in electrically excitable cells. In the current study, the possible effects of HBA and GAS on different ionic currents in pituitary GH3 cells and hippocampal mHippoE-14 neurons were investigated using the patch-clamp technique. The addition of HBA or GAS resulted in the differential inhibition of the M-type K+ current (IK(M)) density in a concentration-dependent manner in GH3 cells. HBA resulted in a slowing of the activation time course of IK(M), while GAS elevated it. HBA also mildly suppressed the density of erg-mediated or the delayed-rectifier K+ current in GH3 cells. Neither GAS nor HBA (10 µM) modified the voltage-gated Na+ current density, although they suppressed the L-type Ca2+ current density at the same concentration. In hippocampal mHippoE-14 neurons, HBA was effective at inhibiting IK(M) density as well as slowing the activation time course. Taken together, the present study provided the first evidence that HBA or GAS could act on cellular mechanisms, and could therefore potentially have a functional influence in various neurologic disorders.


2020 ◽  
Vol 21 (1) ◽  
pp. 357 ◽  
Author(s):  
Edmund Cheung So ◽  
Zi-Han Gao ◽  
Shun Yao Ko ◽  
Sheng-Nan Wu

Pterostilbene (PTER), a natural dimethylated analog of resveratrol, has been demonstrated to produce anti-neoplastic or neuroprotective actions. However, how and whether this compound can entail any perturbations on ionic currents in electrically excitable cells remains unknown. In whole-cell current recordings, addition of PTER decreased the amplitude of macroscopic Ih during long-lasting hyperpolarization in GH3 cells in a concentration-dependent manner, with an effective IC50 value of 0.84 μM. Its presence also shifted the activation curve of Ih along the voltage axis to a more hyperpolarized potential, by 11 mV. PTER at a concentration greater than 10 μM could also suppress l-type Ca2+ and transient outward K+ currents in GH3 cells. With the addition of PTER, IK(Ca) amplitude was increased, with an EC50 value of 2.23 μM. This increase in IK(Ca) amplitude was attenuated by further addition of verruculogen, but not by tolbutamide or TRAM-39. Neither atropine nor nicotine, in the continued presence of PTER, modified the PTER-stimulated IK(Ca). PTER (10 μM) slightly suppressed the amplitude of l-type Ca2+ current and transient outward K+ current. The presence of PTER (3 μM) was also effective at increasing the open-state probability of large-conductance Ca2+-activated K+ (BKCa) channels identified in hippocampal mHippoE-14 neurons; however, its inability to alter single-channel conductance was detected. Our study highlights evidence to show that PTER has the propensity to perturb ionic currents (e.g., Ih and IK(Ca)), thereby influencing the functional activities of neurons, and neuroendocrine or endocrine cells.


2020 ◽  
Vol 21 (2) ◽  
pp. 396 ◽  
Author(s):  
Wei-Ting Chang ◽  
Zi-Han Gao ◽  
Shih-Wei Li ◽  
Ping-Yen Liu ◽  
Yi-Ching Lo ◽  
...  

Oxaliplatin (OXAL) is regarded as a platinum-based anti-neoplastic agent. However, its perturbations on membrane ionic currents in neurons and neuroendocrine or endocrine cells are largely unclear, though peripheral neuropathy has been noted during its long-term administration. In this study, we investigated how the presence of OXAL and other related compounds can interact with two types of inward currents; namely, hyperpolarization-activated cation current (Ih) and membrane electroporation-induced current (IMEP). OXAL increased the amplitude or activation rate constant of Ih in a concentration-dependent manner with effective EC50 or KD values of 3.2 or 6.4 μM, respectively, in pituitary GH3 cells. The stimulation by this agent of Ih could be attenuated by subsequent addition of ivabradine, protopine, or dexmedetomidine. Cell exposure to OXAL (3 μM) resulted in an approximately 11 mV rightward shift in Ih activation along the voltage axis with minimal changes in the gating charge of the curve. The exposure to OXAL also effected an elevation in area of the voltage-dependent hysteresis elicited by long-lasting triangular ramp. Additionally, its application resulted in an increase in the amplitude of IMEP elicited by large hyperpolarization in GH3 cells with an EC50 value of 1.3 μM. However, in the continued presence of OXAL, further addition of ivabradine, protopine, or dexmedetomidine always resulted in failure to attenuate the OXAL-induced increase of IMEP amplitude effectively. Averaged current-voltage relation of membrane electroporation-induced current (IMEP) was altered in the presence of OXAL. In pituitary R1220 cells, OXAL-stimulated Ih remained effective. In Rolf B1.T olfactory sensory neurons, this agent was also observed to increase IMEP in a concentration-dependent manner. In light of the findings from this study, OXAL-mediated increases of Ih and IMEP may coincide and then synergistically act to increase the amplitude of inward currents, raising the membrane excitability of electrically excitable cells, if similar in vivo findings occur.


Sign in / Sign up

Export Citation Format

Share Document