scholarly journals Reverse Osmosis Treatment of Wastewater for Reuse as Process Water—A Case Study

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 976
Author(s):  
Marjana Simonič

The aim of this work was to purify mixed wastewater from three different production processes in such a manner that they could be reused as process water. The maximum allowed concentrations (MAC) from the Environmental Standards for emissions of substances released into surface water were set as target concentrations. Wastewaters contained solid particles, sodium, aluminium, chloride, and nitrogen in high amounts. Quantitatively, most wastewaters were generated in the production line of alumina washing. The second type of wastewater was generated from the production line of boehmite. The third type of wastewater was from regeneration of ion exchangers, which are applied for feed boiler water treatment. The initial treatment step of wastewater mixture was neutralisation, using 35% HCl. The precoat filtration followed, and the level of suspended solids was reduced from 320 mg/L to only 9 mg/L. The concentrations of ions, such as aluminium, sodium and chlorides remained above the MAC. Therefore, laboratory reverse osmosis was applied to remove the listed pollutants from the water. We succeeded in removal of all the pollutants. The concentration of aluminium decreased below 3 mg/L, the sodium to 145 mg/L and chlorides to 193 mg/L. The concentration of nitrate nitrogen decreased below 20 mg/L.

2012 ◽  
Vol 65 (10) ◽  
pp. 1895-1902 ◽  
Author(s):  
Rita Hilliges ◽  
Eberhard Steinle ◽  
Bernhard Böhm

The two-staged WWTP ‘Gut Grosslappen’ has a capacity of 2 mio. PE. It comprises a pre-denitrification in the first stage using recirculation from the nitrifying second stage. A residual post-denitrification in a downstream sand filter is required in order to achieve the effluent standards. Presently the process water from sludge digestion is treated separately by nitrification/denitrification. Due to necessary reconstruction of the biological stages, the process water treatment was included in the future overall process concept of the WWTP. A case study was conducted comparing the processes nitritation/denitrititation and deammonification with nitrification/denitrification including their effect on the operational costs of the planned main flow treatment. Besides the different operating costs the investment costs required for the process water treatment played a significant role. Six cases for the process water treatment were compared. As a result, in Munich deammonification can only be recommended for long-term future developments, due to the high investment costs, compared with the nitritation/denitritation alternative realizable in existing tanks. The savings concerning aeration, sludge disposal and chemicals were not sufficient to compensate for the additional investment costs. Due to the specific circumstances in Munich, for the time being the use of existing tanks for nitritation/denitritation proved to be most economical.


Procedia CIRP ◽  
2016 ◽  
Vol 40 ◽  
pp. 268-273 ◽  
Author(s):  
Vikrant Bhakar ◽  
D.N.S. Hemanth Kumar ◽  
Nitin Krishna Sai ◽  
Kuldip Singh Sangwan ◽  
Smita Raghuvanshi

Author(s):  
Sami M Al Aibi ◽  
Jamal S Al Rukabie ◽  
Adel O Sharif ◽  
Dhia Y Aqar ◽  
Hameed B Mahood ◽  
...  

2015 ◽  
Vol 71 ◽  
pp. 191-202 ◽  
Author(s):  
María S. Japas ◽  
Nora A. Rubinstein ◽  
Anabel L.R. Gómez
Keyword(s):  

1996 ◽  
Vol 12 (01) ◽  
pp. 39-48
Author(s):  
Svein I. Sagatun ◽  
Karl Erik Kjelstad

This paper presents the current status of robot technology in the shipyard production environment. The focus is on a case study in which a computer-integrated and robotized web and component line is presented. This production line will be fully operational by mid-1995. An overview has also been included of the most relevant technologies with regard to robot production in the shipbuilding industry, and how these technologies contributed to the introduction of robots in shipyards. The need for integrating the robots with the rest of the shipyard's material flow, computer systems and organization is discussed, followed by a brief survey of emerging technologies which may be useful for the shipbuilding community.


2005 ◽  
Vol 68 (4) ◽  
pp. 801-807 ◽  
Author(s):  
SANDRA CASANI ◽  
TINA B. HANSEN ◽  
JAKOB CHRISTENSEN ◽  
SUSANNE KNØCHEL

Interest in reuse of process water from the food industry has reinforced the importance of controlling and monitoring the effectiveness and reliability of treatment systems regarding removal of organic matter and microorganisms. The ability of adenosine triphosphate bioluminescence, conductivity, turbidometry, absorbance, and multichannel fluorescence spectroscopy for indirectly monitoring the integrity of a reverse osmosis membrane when treating process water recovered from peeling in a shrimp processing line was evaluated. This study demonstrated that reverse osmosis was capable of removing bacteria (ca. 7 log CFU ml−1) to the levels required by the regulatory authorities for water recycling within the same food unit operation. Adenosine triphosphate and turbidometry showed a higher sensitivity for detecting compromising conditions at the treatment system (0.1% concentration of feed in permeate) and a better correlation with the aerobic count at lower levels than the other methods investigated. The sensitivity for assessing membrane integrity of conductivity and multichannel fluorescence was 1% of feed in permeate. Impact of feed variations was best leveled out in the permeates for turbidity measurements. Multichannel fluorescence spectroscopy may require laborious calibration procedures and expertise regarding data analysis and interpretation of results, which are not always available in food industries. Absorbance did not respond to changes in membrane integrity and was not well correlated to the aerobic count because of the poor sensitivity of this method for these purposes.


Sign in / Sign up

Export Citation Format

Share Document