scholarly journals The Deformation Characteristics, Fracture Behavior and Strengthening-Toughening Mechanisms of Laminated Metal Composites: A Review

Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 4 ◽  
Author(s):  
Kuan Gao ◽  
Xin Zhang ◽  
Baoxi Liu ◽  
Jining He ◽  
Jianhang Feng ◽  
...  

Multilayer metal composites have great application prospects in automobiles, ships, aircraft and other manufacturing industries, which reveal their superior strength, toughness, ductility, fatigue lifetime, superplasticity and formability. This paper presents the various mechanical properties, deformation characteristics and strengthening–toughening mechanisms of laminated metal matrix composites during the loading and deformation process, and that super-high mechanical properties can be obtained by adjusting the fabrication process and structure parameters. In the macroscale, the interface bonding status and layer thickness can effectively affect the fracture, impact toughness and tensile fracture elongation of laminated metal matrix composites, and the ductility and toughness cannot be fitting to the rule of mixture (ROM). However, the elastic properties, yield strength and ultimate strength basically follow the rule of mixture. In the microscale, the mechanical properties, deformation characteristics, fracture behavior and toughening mechanisms of laminated composites reveal the obvious size effect.

2018 ◽  
Vol 60 (12) ◽  
pp. 1221-1224 ◽  
Author(s):  
Balachandran Gobalakrishnan ◽  
P. Ramadoss Lakshminarayanan ◽  
Raju Varahamoorthi

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 738
Author(s):  
Xin Zhang ◽  
Shaoqing Wang

The relationship between point defects and mechanical properties has not been fully understood yet from a theoretical perspective. This study systematically investigated how the Stone–Wales (SW) defect, the single vacancy (SV), and the double vacancy (DV) affect the mechanical properties of graphene/aluminum composites. The interfacial bonding energies containing the SW and DV defects were about twice that of the pristine graphene. Surprisingly, the interfacial bonding energy of the composites with single vacancy was almost four times that of without defect in graphene. These results indicate that point defects enhance the interfacial bonding strength significantly and thus improve the mechanical properties of graphene/aluminum composites, especially the SV defect. The differential charge density elucidates that the formation of strong Al–C covalent bonds at the defects is the most fundamental reason for improving the mechanical properties of graphene/aluminum composites. The theoretical research results show the defective graphene as the reinforcing phase is more promising to be used in the metal matrix composites, which will provide a novel design guideline for graphene reinforced metal matrix composites. Furthermore, the sp3-hybridized C dangling bonds increase the chemical activity of the SV graphene, making it possible for the SV graphene/aluminum composites to be used in the catalysis field.


2020 ◽  
Author(s):  
N. Poornachandiran ◽  
R. Pugazhenthi ◽  
S. Vijay Ananth ◽  
T. Gopala Krishnan ◽  
M. Vairavel

Author(s):  
S. Sathiyaraj ◽  
A. Senthilkumar ◽  
P. Muhammed Ameen ◽  
Rhitwik Sundar ◽  
Vishnu Saseendran

2020 ◽  
Vol 33 ◽  
pp. 1144-1148
Author(s):  
B. Suresh Babu ◽  
P. Prathap ◽  
T. Balaji ◽  
D. Gowtham ◽  
S.D. Sree Adi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document