scholarly journals A New Empirical Life Prediction Model for 9–12%Cr Steels under Low Cycle Fatigue and Creep Fatigue Interaction Loadings

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 183 ◽  
Author(s):  
Xiaowei Wang ◽  
Wei Zhang ◽  
Tianyu Zhang ◽  
Jianming Gong ◽  
Magd Abdel Wahab

Low cycle fatigue (LCF) and creep fatigue interaction (CFI) loadings are the main factors resulting in the failure of many critical components in the infrastructure of power plants and aeronautics. Accurate prediction of life spans under specified loading conditions is significant for the design and maintenance of components. In the present study, various LCF and CFI tests are conducted to investigate the effects of temperature, strain amplitude, hold time and hold direction on the fatigue life of P92 steel. To predict fatigue life under different experimental conditions, various conventional life prediction models are evaluated and discussed. Moreover, a new empirical life prediction model is proposed based on the conventional Manson-Coffin-Basquin (MCB) model. The newly proposed model is able to simultaneously consider the effects of temperature, strain amplitude, hold time and hold direction on predicted life. The main advantage is that only the known input experimental parameters are required to perform the prediction. In addition to the validation made through the experimental data of P92 steel conducted in the present paper, the model is also verified through numerous experimental data reported in the literature for various 9–12% Cr steels.

2007 ◽  
Vol 353-358 ◽  
pp. 190-194
Author(s):  
Nian Jin Chen ◽  
Zeng Liang Gao ◽  
Wei Zhang ◽  
Yue Bao Le

The law of low-cycle fatigue with hold time at elevated temperature is investigated in this paper. A new life prediction model for the situation of fatigue and creep interaction is developed, based on the damage due to fatigue and creep. In order to verify the prediction model, strain-controlled low-cycle fatigue tests at temperature 693K, 823K and 873K and fatigue tests with various hold time at temperature 823K and 873K for 316L austenitic stainless steel were carried out. Good agreement is found between the predictions and experimental results.


2013 ◽  
Vol 860-863 ◽  
pp. 972-977 ◽  
Author(s):  
De Xian Wang ◽  
Dong Mei Ji ◽  
Jian Xing Ren

Taking the P92 steel as the object,Creep-Fatigue (CF) tests of P92 steel at 873K under stress-controlled were carried out with GWT2504 equipment to investigate the CF life prediction. The life prediction model based on Applied Mechanical Work Density (AMWD) was developed in this study,and introduce the effective coefficient ƞ to modify the former. To verify the prediction capability of the AMWD-based and the modified model, comparisons of the models predicted lives with the experimental data of CF tests on P92 steel at 873K were made, it is found out that the AMWD-based model predictions for CF are in agreement with the experimental lives with the factors of 0.9013 and 1.0600, which verifies the model has a good predictability, and the Modified model with the factors of 0.9558 and 1.0469.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 76 ◽  
Author(s):  
Wei Zhang ◽  
Tao Jiang ◽  
Liqiang Liu

In this paper, a high-temperature low-cycle fatigue life prediction model, based on the total strain energy density method, was established. Considering the influence of the Masing and non-Masing behavior of materials on life prediction, a new life prediction model was obtained by modifying the existing prediction model. With an 800H alloy of the heat transfer tube of a steam generator as the research object, the high-temperature and low-cycle fatigue test was carried out at two temperatures. The results show that the predicted and experimental results are in good agreement, proving the validity of the life prediction model.


2013 ◽  
Vol 794 ◽  
pp. 441-448 ◽  
Author(s):  
G.V. Prasad Reddy ◽  
R. Sandhya ◽  
M.D. Mathew ◽  
S. Sankaran

Low cycle fatigue (LCF) and Creep-fatigue interaction (CFI) behavior of 316LN austenitic stainless steel alloyed with 0.07, 0.11, 0.14, .22 wt.% nitrogen is briefly discussed in this paper. The strain-life fatigue behavior of these steels is found to be dictated by not only cyclic plasticity but also by dynamic strain aging (DSA) and secondary cyclic hardening (SCH). The influence of the above phenomenon on cyclic stress response and fatigue life is evaluated in the present study. The above mentioned steels exhibited both single-and dual-slope strain-life fatigue behavior depending on the test temperatures. Concomitant dislocation substructural evolution has revealed transition in substructures from planar to cell structures justifying the change in slope. The beneficial effect of nitrogen on LCF life is observed to be maximum for 316LN with nitrogen in the range 0.11 - 0.14 wt.%, for the tests conducted over a range of temperatures (773-873 K) and at ±0.4 and 0.6 % strain amplitudes at a strain rate of 3*10-3 s-1. A decrease in the applied strain rate from 3*10-3 s-1 to 3*10-5 s-1 or increase in the test temperature from 773 to 873 K led to a peak in the LCF life at a nitrogen content of 0.07 wt.%. Similar results are obtained in CFI tests conducted with tensile hold periods of 13 and 30 minutes. Fractography studies of low strain rate and hold time tested specimens revealed extensive intergranular cracking.


1985 ◽  
Vol 20 (10) ◽  
pp. 3763-3770 ◽  
Author(s):  
Jin Wan Hong ◽  
Soo Woo Nam ◽  
Kyong-Tschong Rie

Sign in / Sign up

Export Citation Format

Share Document