scholarly journals A Digitized Representation of the Modified Prandtl–Ishlinskii Hysteresis Model for Modeling and Compensating Piezoelectric Actuator Hysteresis

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 942
Author(s):  
Chao Zhou ◽  
Chen Feng ◽  
Yan Naing Aye ◽  
Wei Tech Ang

Piezoelectric actuators are widely used in micromanipulation and miniature robots due to their rapid response and high repeatability. The piezoelectric actuators often have undesired hysteresis. The Prandtl–Ishlinskii (PI) hysteresis model is one of the most popular models for modeling and compensating the hysteresis behaviour. This paper presents an alternative digitized representation of the modified Prandtl–Ishlinskii with the dead-zone operators (MPI) hysteresis model to describe the asymmetric hysteresis behavior of piezoelectric actuators. Using a binary number with n digits to represent the classical Prandtl–Ishlinskii hysteresis model with n elementary operators, the inverse model can be easily constructed. A similar representation of the dead-zone operators is also described. With the proposed digitized representation, the model is more intuitive and the inversion calculation is avoided. An experiment with a piezoelectric stacked linear actuator is conducted to validate the proposed digitized MPI hysteresis model and it is shown that it has almost the same performance as compared to the classical representation.

2021 ◽  
Vol 20 (2) ◽  
pp. 25-32
Author(s):  
Noorhazirah Sunar ◽  
Mohd Fua’ad Rahmat ◽  
Ahmad ‘Athif Mohd Fauzi ◽  
Zool Hilmi Ismail ◽  
Siti Marhanis Osman ◽  
...  

Dead-zone in the valve degraded the performances of the Electro-Pneumatic Actuator (EPA) system.  It makes the system difficult to control, become unstable and leads to chattering effect nearest desired position.  In order to cater this issue, the EPA system transfer function and the dead-zone model is identified by MATLAB SI toolbox and the Particle Swarm Optimization (PSO) algorithm respectively.  Then a parametric control is designed based on pole-placement approach and combine with feed-forward inverse dead-zone compensation.  To reduce chattering effect, a smooth parameter is added to the controller output.  The advantages of using these techniques are the chattering effect and the dead-zone of the EPA system is reduced.  Moreover, the feed-forward system improves the transient performance.  The results are compared with the pole-placement control (1) without compensator and (2) with conventional dead-zone compensator.  Based on the experimental results, the proposed controller reduced the chattering effect due to the controller output of conventional dead-zone compensation, 90% of the pole-placement controller steady-state error and 30% and 40% of the pole-placement controller with conventional dead-zone compensation settling time and rise time.


AIP Advances ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 065204 ◽  
Author(s):  
Jinqiang Gan ◽  
Xianmin Zhang ◽  
Heng Wu

Author(s):  
Mohammad A. Al-Shudeifat

Symmetric piecewise nonlinearities are employed here to design highly efficient nonlinear energy sink (NES). These symmetric piecewise nonlinearities are usually called in the literature as dead-zone nonlinearities. The proposed dead-zone NES includes symmetric clearance about its equilibrium position in which zero stiffness and linear viscous damping are incorporated. At the boundaries of the symmetric clearance, the NES is coupled to the linear structure by either linear or nonlinear stiffness components in addition to similar viscous damping to that in the clearance zone. By this flexible design of the dead-zone NES, we obtain a considerable enhancement in the NES efficiency at moderate and severe energy inputs. Moreover, the dead-zone NES is also found here through numerical simulations to be more robust for damping and stiffness variations than the linear absorber and some other types of NESs.


2002 ◽  
Vol 2 (3/4) ◽  
pp. 187-191 ◽  
Author(s):  
T. Faug ◽  
P. Lachamp ◽  
M. Naaim

Abstract. An experimental investigation with dry granular flows passing over an obstacle down a rough inclined channel has been performed. The aim is to improve our understanding of the interaction between dense snow avalanches and defence structures. Specific attention was directed to the study of the zone of influence upstream from the obstacle, linked to the formation of a dead zone. The dead zone length L was systematically measured as a function of the obstacle height H and the channel inclination θ, for several discharges. In a whole range of channel inclinations, all the data are shown to collapse into a single curve when properly scaled. The scaling is based on the introduction of a theoretical deposit length (depending on H, θ and the internal friction angle of the material, φ) and a Froude number of the flow depending on the obstacle height.


Sign in / Sign up

Export Citation Format

Share Document