miniature robots
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Neng Xia ◽  
Dongdong Jin ◽  
Veronica Iacovacci ◽  
Li Zhang

Abstract Miniature robots and actuators with micrometer or millimeter scale size can be driven by diverse power sources, e.g., chemical fuels, light, magnetic, and acoustic fields. These machines have the potential to access complex narrow spaces, execute medical tasks, perform environmental monitoring, and manipulate micro-objects. Recent advancements in 3D printing techniques have demonstrated great benefits in manufacturing small-scale structures such as customized design with programmable physical properties. Combining 3D printing methods, functional polymers, and active control strategies enables these miniature machines with diverse functionalities to broaden their potentials in medical applications. Herein, this review provides an overview of 3D printing techniques applicable for the fabrication of small-scale machines and printable functional materials, including shape-morphing materials, biomaterials, composite polymers, and self-healing polymers. Functions and applications of tiny robots and actuators fabricated by 3D printing and future perspectives toward small-scale intelligent machines are discussed.


2022 ◽  
Author(s):  
Raphael Zufferey ◽  
Robert Siddall ◽  
Sophie F. Armanini ◽  
Mirko Kovac

Author(s):  
Changyu Xu ◽  
Zilin Yang ◽  
Shaun Wee Kiat Tan ◽  
Jianhuang Li ◽  
Guo Zhan Lum

Magnetic miniature robots (MMRs) are mobile actuators that can exploit their size to non-invasively access highly confined, enclosed spaces. By leveraging on such unique abilities, MMRs have great prospects to transform robotics, biomedicine and materials science. As having high dexterity is critical for MMRs to enable their targeted applications, existing MMRs have developed numerous soft-bodied gaits to locomote in various environments. However, there exist two critical limitations that have severely restricted their dexterity: (i) MMRs capable of multimodal soft-bodied locomotion have only demonstrated five-degrees-of-freedom (five-DOF) motions because the sixth-DOF rotation about their net magnetic moment axis is uncontrollable; (ii) six-DOF MMRs have only realized one mode of soft-bodied, swimming locomotion. Here we propose a six-DOF MMR that can execute seven modes of soft-bodied locomotion and perform 3-dimensional pick-and-place operations. By optimizing its harmonic magnetization profile, our MMR can produce 1.41-63.9 folds larger sixth-DOF torque than existing MMRs with similar profiles, without compromising their traditional five-DOF actuation capabilities. The proposed MMR demonstrated unprecedented dexterity; it could jump through narrow slots to reach higher grounds; use precise orientation control to roll, two-anchor crawl and swim across tight openings with strict shape constraints; perform undulating crawling across three different planes in convoluted channels. Keywords: Magnetic materials; soft actuators; miniature robots; locomotion. Corresponding author(s) Email:   [email protected]  


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 335
Author(s):  
Víctor Ruiz-Díez ◽  
José Luis García-Caraballo ◽  
Jorge Hernando-García ◽  
José Luis Sánchez-Rojas

The miniaturization of robots with locomotion abilities is a challenge of significant technological impact in many applications where large-scale robots have physical or cost restrictions. Access to hostile environments, improving microfabrication processes, or advanced instrumentation are examples of their potential use. Here, we propose a miniature 20 mm long sub-gram robot with piezoelectric actuation whose direction of motion can be controlled. A differential drive approach was implemented in an H-shaped 3D-printed motor platform featuring two plate resonators linked at their center, with built-in legs. The locomotion was driven by the generation of standing waves on each plate by means of piezoelectric patches excited with burst signals. The control of the motion trajectory of the robot, either translation or rotation, was attained by adjusting the parameters of the actuation signals such as the applied voltage, the number of applied cycles, or the driving frequency. The robot demonstrated locomotion in bidirectional straight paths as long as 65 mm at 2 mm/s speed with a voltage amplitude of only 10 V, and forward and backward precise steps as low as 1 µm. The spinning of the robot could be controlled with turns as low as 0.013 deg. and angular speeds as high as 3 deg./s under the same conditions. The proposed device was able to describe complex trajectories of more than 160 mm, while carrying 70 times its own weight.


2021 ◽  
pp. 211-242
Author(s):  
Chelsea Shan Xian Ng ◽  
Changyu Xu ◽  
Zilin Yang ◽  
Guo Zhan Lum

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 942
Author(s):  
Chao Zhou ◽  
Chen Feng ◽  
Yan Naing Aye ◽  
Wei Tech Ang

Piezoelectric actuators are widely used in micromanipulation and miniature robots due to their rapid response and high repeatability. The piezoelectric actuators often have undesired hysteresis. The Prandtl–Ishlinskii (PI) hysteresis model is one of the most popular models for modeling and compensating the hysteresis behaviour. This paper presents an alternative digitized representation of the modified Prandtl–Ishlinskii with the dead-zone operators (MPI) hysteresis model to describe the asymmetric hysteresis behavior of piezoelectric actuators. Using a binary number with n digits to represent the classical Prandtl–Ishlinskii hysteresis model with n elementary operators, the inverse model can be easily constructed. A similar representation of the dead-zone operators is also described. With the proposed digitized representation, the model is more intuitive and the inversion calculation is avoided. An experiment with a piezoelectric stacked linear actuator is conducted to validate the proposed digitized MPI hysteresis model and it is shown that it has almost the same performance as compared to the classical representation.


MRS Advances ◽  
2021 ◽  
Author(s):  
Wujoon Cha ◽  
Luke Kasper ◽  
Matthew F. Campbell ◽  
Thomas J. Celenza ◽  
George A. Popov ◽  
...  

2021 ◽  
Vol 6 (53) ◽  
pp. eabf4788
Author(s):  
Geoffrey M. Spinks ◽  
Nicolas D. Martino ◽  
Sina Naficy ◽  
David J. Shepherd ◽  
Javad Foroughi

Powering miniature robots using actuating materials that mimic skeletal muscle is attractive because conventional mechanical drive systems cannot be readily downsized. However, muscle is not the only mechanically active system in nature, and the thousandfold contraction of eukaryotic DNA into the cell nucleus suggests an alternative mechanism for high-stroke artificial muscles. Our analysis reveals that the compaction of DNA generates a mass-normalized mechanical work output exceeding that of skeletal muscle, and this result inspired the development of composite double-helix fibers that reversibly convert twist to DNA-like plectonemic or solenoidal supercoils by simple swelling and deswelling. Our modeling-optimized twisted fibers give contraction strokes as high as 90% with a maximum gravimetric work 36 times higher than skeletal muscle. We found that our supercoiling coiled fibers simultaneously provide high stroke and high work capacity, which is rare in other artificial muscles.


Sign in / Sign up

Export Citation Format

Share Document