scholarly journals Mechano-Triboelectric Analysis of Surface Charge Generation on Replica-Molded Elastomeric Nanodomes

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1460
Author(s):  
Myung Gi Ji ◽  
Mohammed Bazroun ◽  
In Ho Cho ◽  
W. Dennis Slafer ◽  
Rana Biswas ◽  
...  

Replica molding-based triboelectrification has emerged as a new and facile technique to generate nanopatterned tribocharge on elastomer surfaces. The “mechano-triboelectric charging model” has been developed to explain the mechanism of the charge formation and patterning process. However, this model has not been validated to cover the full variety of nanotexture shapes. Moreover, the experimental estimation of the tribocharge’s surface density is still challenging due to the thick and insulating nature of the elastomeric substrate. In this work, we perform experiments in combination with numerical analysis to complete the mechano-triboelectrification charging model. By utilizing Kelvin probe force microscopy (KPFM) and finite element analysis, we reveal that the mechano-triboelectric charging model works for replica molding of both recessed and protruding nanotextures. In addition, by combining KPFM with numerical electrostatic modeling, we improve the accuracy of the surface charge density estimation and cross-calibrate the result against that of electrostatic force microscopy. Overall, the regions which underwent strong interfacial friction during the replica molding exhibited high surface potential and charge density, while those suffering from weak interfacial friction exhibited low values on both. These multi-physical approaches provide useful and important tools for comprehensive analysis of triboelectrification and generation of nanopatterned tribocharge. The results will widen our fundamental understanding of nanoscale triboelectricity and advance the nanopatterned charge generation process for future applications.

Nanoscale ◽  
2017 ◽  
Vol 9 (27) ◽  
pp. 9668-9675 ◽  
Author(s):  
Jia Jia Shao ◽  
Wei Tang ◽  
Tao Jiang ◽  
Xiang Yu Chen ◽  
Liang Xu ◽  
...  

A multi-dielectric-layered vertical contact-separation mode TENG through a corona discharge approach results in outstanding output performances, i.e., a high surface charge density of 283 μC m−2 and excellent cycling stability (92.6% retention after 200 000 cycles).


2020 ◽  
Vol 130 (3) ◽  
pp. 36001
Author(s):  
M. Herzberg ◽  
S. Dobberschütz ◽  
D. Okhrimenko ◽  
N. E. Bovet ◽  
M. P. Andersson ◽  
...  

1999 ◽  
Vol 596 ◽  
Author(s):  
William Jo ◽  
D. C. Kim ◽  
J. W. Hong

AbstractWe report results on domain retention in preferentially oriented Pb(Zr,Ti)O3 (PZT) thin films on Pt and on LaNiO3 (LNO) electrodes. Effects of bottom electrodes on domain images and retention properties have been explored by detecting an electrostatic force exerted on the biased conductive probe. It was demonstrated that polarization loss of PZT crystallites on LNO appears to be less than that of PZT grains on Pt. Moreover, charge retention was controlled by a reverse-poling protocol during electrostatic force microscopy (EFM) measurements. The surface charge density of the PZT films was observed as a function of time in a selected area where a region is single-poled and another region is reverse-poled. The retention behavior of the regions is very different; the single-poled region shows a declined response and the reverse-poled region reveals a retained characteristic. Decay and retention mechanisms are explained by space-charge redistribution and trapping of defects in the films.


2019 ◽  
Vol 7 (41) ◽  
pp. 23727-23732 ◽  
Author(s):  
Ki Hyun Lee ◽  
Hun Park ◽  
Wonsik Eom ◽  
Dong Jun Kang ◽  
Sung Hyun Noh ◽  
...  

Graphene quantum dots were intercalated into graphene fiber nanochannel as a nano-charger for high surface charge density. The hybrid nanochannel shows efficient ion transport behaviors and ion selectivity facilitating superior osmotic power generation.


Author(s):  
Byungrak Son ◽  
JaeHyoung Park ◽  
Osung Kwon

Understanding the ionic channel network of proton exchange membranes, which dictate fuel cell performance, is crucial when developing proton exchange membrane fuel cells. However, itis difficult to characterize due to complicated nano structure and differing changes to their structure with different amounts of water uptake. Electrostatic force microscopy (EFM) can map surface charge distribution as nano special resolution by measuring the electrostatic force between a vibrating conductive tip and a charged surface under an applied voltage, . In this study, the ionic channel network of a proton exchange membrane is analyzed using EFM. A mathematical approximation model of the ionic channel network is first derived, to explain changes in force gradient on the surface using EFM. The phase lag of dry and wet Nafion under stepwise changes to bias voltage is then measured. Based on the model, variations in the ionic channel network of Nafion with different amounts of water uptake are analyzed numerically. The mean surface charge density of both membranes, which is connected with the ionic channel network, is calculated using the model. The results show that the difference between the mean surface charge of the dry and wet membranes is consistent with the variation in their proton conductivity.


Sign in / Sign up

Export Citation Format

Share Document