scholarly journals The Role of Soft Robotic Micromachines in the Future of Medical Devices and Personalized Medicine

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 28
Author(s):  
Lourdes Garcia ◽  
Genevieve Kerns ◽  
Kaitlin O’Reilley ◽  
Omolola Okesanjo ◽  
Jacob Lozano ◽  
...  

Developments in medical device design result in advances in wearable technologies, minimally invasive surgical techniques, and patient-specific approaches to medicine. In this review, we analyze the trajectory of biomedical and engineering approaches to soft robotics for healthcare applications. We review current literature across spatial scales and biocompatibility, focusing on engineering done at the biotic-abiotic interface. From traditional techniques for robot design to advances in tunable material chemistry, we look broadly at the field for opportunities to advance healthcare solutions in the future. We present an extracellular matrix-based robotic actuator and propose how biomaterials and proteins may influence the future of medical device design.

2020 ◽  
Vol 6 (2) ◽  
pp. 233-258 ◽  
Author(s):  
Sean Peel ◽  
Dominic Eggbeer ◽  
Peter Dorrington

Purpose/audience: this study targets designers, clinicians and biomedical engineers who are involved in digital surgical planning and patient-specific medical device design, either in hospitals, universities or companies. A commonly accepted, standardized design process does not exist in this specialized but highly variable field, and this can make regulatory compliance via the implementation of quality standards more difficult. Methodology/approach: an article-based design pro-forma was created based on needs identified in previous work. It was structured in order to broadly standardize the design process; consolidate planning and modelling behaviours into discrete clusters; anticipate decision-making on key product requirements; facilitate focused discussion with clients (surgeons); create a pleasurable experience for the designer; and encourage detailed reporting of design decisions and therefore to lower barriers to Quality Management System (QMS) implementation and adherence. The performance of the pro-forma was verified using observation, simultaneous verbalization and semi-structured interviews. Three participants across two contexts were observed designing without and then with the pro-forma. Their behaviours and comments were recorded, their designed outcomes evaluated and their quality compliance assessed. Findings: The design workflow was shown to be segmented and contained within distinct and repeatable steps when using the pro-forma. Reported participant confidence increased and stress decreased. Contact time between participants and clients was consolidated. Designed outputs and documented records successfully complied with generalizable aspects of the International Organization for Standardization (ISO) 13485 standard. However, it did not, and by definition could never, wholly implement a complete certifiable QMS, which must be tailored to a specific organization. Implications for practice, society or research: as demand for patient-specific devices continues to rise, and as regulatory requirements about QMS adherence extend to cover all contexts, organizations will need to react accordingly. This pro-forma offers a clear direction for how to introduce evidence-based best practices, and a starting point for full QMS certification. Originality/value: this research marks the first attempt to standardize this highly specialized design process across users, tools and contexts.


Procedia CIRP ◽  
2018 ◽  
Vol 70 ◽  
pp. 235-240 ◽  
Author(s):  
Cristian C. Ardila ◽  
Clara Isabel López ◽  
Javier Mauricio Martínez ◽  
Genny Liliana Meléndez ◽  
Diana Carolina Navarro ◽  
...  

Author(s):  
Shannon Clark ◽  
Divya Natesan ◽  
Morgan Walker ◽  
Denise Forkey

Out-of-the-box experience is an important consideration in medical device design that not only impacts the user’s impression of the product, but can also have critical safety implications. This article discusses the basic safety questions to contemplate in a use-related risk analysis pertaining to the out-of-the-box experience, and focuses on how the most critical safety risks can be reduced or eliminated by conducting a usability study related to the out-of-the-box experience.


2021 ◽  
Vol 11 (20) ◽  
pp. 9430
Author(s):  
Fabiola Cortes-Chavez ◽  
Alberto Rossa-Sierra ◽  
Elvia Luz Gonzalez-Muñoz

The medical device design process has a responsibility to define the characteristics of the object to ensure its correct interaction with users. This study presents a proposal to improve medical device design processes in order to increase user acceptance by considering two key factors: the user hierarchy and the relationship with the patient’s health status. The goal of this study is to address this research gap and to increase design factors with practical suggestions for the design of new medical devices. The results obtained here will help medical device designers make more informed decisions about the functions and features required in the final product during the development stage. In addition, we aim to help researchers with design process didactics that demonstrate the importance of the correct execution of the process and how the factors considered can have an impact on the final product. An experiment was conducted with 40 design engineering students who designed birthing beds via two design processes: the traditional product design process and the new design process based on hierarchies (proposed in this study). The results showed a significant increase in the user acceptance of the new birthing bed developed with the hierarchical-based design process.


2021 ◽  
Author(s):  
Liting Jing ◽  
Junfeng Ma

Abstract With the advancement of new technologies and diverse customer-centered design requirements, the medical device design decision making becomes challenge. Incorporating multiple stakeholders’ requirements into the medical device design will significantly affect the market competitiveness and performance. The classic design decision making approaches mainly focused on design criteria priority determination and conceptual schemes evaluation, which lack the capacity of reflecting the interdependence of interest among stakeholders and capturing the ambiguous influence on the overall design expectations, leading to the unreliable decision making results. In order to relax these constraints in the medical device design, this paper incorporates rough set theory with cooperative game theory model to develop a novel user-centered design decision making framework. The proposed approach is composed of three components: 1) end/professional user needs identification and classification, 2) evaluation criteria correlation diagram and scheme value matrix establishment using rough set theory; and 3) fuzzy coalition utility model development to obtain optimal desirability considering users’ conflict interests. We used a blood pressure meter case study to demonstrate and validate the proposed approach. Compared with the traditional Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approach, the proposed approach is more robust.


Author(s):  
Fabiola Cortes-Chavez ◽  
Maria Giovanna-Trotta ◽  
Paulina Manzano-Hernandez ◽  
Alberto Rossa-Sierra ◽  
Gabriela Duran-Aguilar

Sign in / Sign up

Export Citation Format

Share Document