scholarly journals Draft Genome Sequence of Linfuranone Producer Microbispora sp. GMKU 363

2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Hisayuki Komaki ◽  
Natsuko Ichikawa ◽  
Akira Hosoyama ◽  
Nobuyuki Fujita ◽  
Arinthip Thamchaipenet ◽  
...  

Here, we report the draft genome sequence of Microbispora sp. GMKU 363, a plant-derived actinomycete that produces linfuranone A, a linear polyketide modified with a furanone ring possessing adipocyte differentiation inducing activity. The biosynthetic gene cluster for linfuranone was identified by analyzing polyketide synthase genes in the genome.

2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Anina Buchmann ◽  
Michael Eitel ◽  
Pierre Koch ◽  
Paul N. Schwarz ◽  
Evi Stegmann ◽  
...  

The bacterium Nocardia terpenica IFM 0406 is known as the producer of the immunosuppressant brasilicardin A. Here, we report the completely sequenced genome of strain IFM 0406, which facilitates the heterologous expression of the brasilicardin biosynthetic gene cluster but also unveils the intriguing biosynthetic capacity of the strain to produce secondary metabolites.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Hisayuki Komaki ◽  
Akira Hosoyama ◽  
Natsuko Ichikawa ◽  
Yasuhiro Igarashi

We report the draft genome sequence of Streptomyces sp. TP-A0874 isolated from compost. This strain produces catechoserine, a new catecholate-type inhibitor of tumor cell invasion. The genome harbors at least six gene clusters for polyketide and nonribosomal peptide biosyntheses. The biosynthetic gene cluster for catechoserines was identified by bioinformatic analysis.


2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Sho Nishimura ◽  
Kazune Nakamura ◽  
Miyako Yamamoto ◽  
Daichi Morita ◽  
Teruo Kuroda ◽  
...  

Information on microbial genome sequences is a powerful resource for accessing natural products with significant activities. We herein report the unveiling of lucensomycin production by Streptomyces achromogenes subsp. streptozoticus NBRC14001 based on the genome sequence of the strain. The genome sequence of strain NBRC14001 revealed the presence of a type I polyketide synthase gene cluster with similarities to a biosynthetic gene cluster for natamycin, which is a polyene macrolide antibiotic that exhibits antifungal activity. Therefore, we investigated whether strain NBRC14001 produces antifungal compound(s) and revealed that an extract from the strain inhibited the growth of Candida albicans. A HPLC analysis of a purified compound exhibiting antifungal activity against C. albicans showed that the compound differed from natamycin. Based on HR-ESI-MS spectrometry and a PubChem database search, the compound was predicted to be lucensomycin, which is a tetraene macrolide antibiotic, and this prediction was supported by the results of a MS/MS analysis. Furthermore, the type I polyketide synthase gene cluster in strain NBRC14001 corresponded well to lucesomycin biosynthetic gene cluster (lcm) in S. cyanogenus, which was very recently reported. Therefore, we concluded that the antifungal compound produced by strain NBRC14001 is lucensomycin.


2020 ◽  
Vol 9 (15) ◽  
Author(s):  
Ninfa Ramírez-Durán ◽  
Rafael R. de la Haba ◽  
Blanca Vera-Gargallo ◽  
Cristina Sánchez-Porro ◽  
Scarlett Alonso-Carmona ◽  
...  

The draft genome sequence of Saccharomonospora piscinae KCTC 19743T, with a size of 4,897,614 bp, was assembled into 11 scaffolds containing 4,561 open reading frames and a G+C content of 71.0 mol%. Polyketide synthase and nonribosomal peptide synthetase gene clusters, which are responsible for the biosynthesis of several biomolecules, were identified and located in different regions in the genome.


2015 ◽  
Vol 3 (5) ◽  
Author(s):  
Hisayuki Komaki ◽  
Natsuko Ichikawa ◽  
Akira Hosoyama ◽  
Nobuyuki Fujita ◽  
Yasuhiro Igarashi

Here, we report the draft genome sequence of Streptomyces sp. TP-A0890, a producer of FR-900452 and A-74863a. The genome was found to contain at least eight polyketide synthase and nonribosomal peptide synthetase gene clusters. A prediction of gene functions based on the sequence similarity allowed us to assign the biosynthetic gene clusters for FR-900452 and A-74863a.


2020 ◽  
Vol 9 (26) ◽  
Author(s):  
Tanushree B. Gupta ◽  
Paul Maclean ◽  
Ruy Jauregui ◽  
Alexis N. Risson ◽  
Gale Brightwell

ABSTRACT We report the draft genome sequence of a new Clostridium cochlearium strain, AGROS13, which was isolated from a sheep dairy farm environment in New Zealand. The genome is 2.7 Mbp, with a GC content of 28.2%. The genome sequence was found to be closely related to that of Clostridium cochlearium ATCC 17787. The new strain harbors a biosynthetic gene cluster coding for an unknown sactipeptide.


2015 ◽  
Vol 3 (5) ◽  
Author(s):  
Hisayuki Komaki ◽  
Natsuko Ichikawa ◽  
Akira Hosoyama ◽  
Nobuyuki Fujita ◽  
Enjuro Harunari ◽  
...  

Here, we report the draft genome sequence of an anthracimycin producer, Streptomyces sp. TP-A0875. The genome contains at least two type I polyketide synthase (PKS) gene clusters, two type II PKS gene clusters, and three nonribosomal peptide synthetase gene clusters. The gene cluster for anthracimycin biosynthesis was identified based on the PKS domain organization.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Hisayuki Komaki ◽  
Akira Hosoyama ◽  
Natsuko Ichikawa ◽  
Yasuhiro Igarashi

Here, we report the draft genome sequence of Bacillus subtilis TP-B0611, which produces the isocoumarin-type compounds bacilosarcin and amicoumacin. The genome encodes three nonribosomal peptide synthetase (NRPS) gene clusters and one hybrid polyketide synthase (PKS)/NRPS gene cluster. The hybrid PKS/NRPS gene cluster was identified to be responsible for the biosynthesis of bacilosarcins and amicoumacins.


2017 ◽  
Vol 5 (21) ◽  
Author(s):  
Scarlett Alonso-Carmona ◽  
Blanca Vera-Gargallo ◽  
Rafael R. de la Haba ◽  
Antonio Ventosa ◽  
Horacio Sandoval-Trujillo ◽  
...  

ABSTRACT The draft genome sequence of Saccharomonospora sp. strain LRS4.154, a moderately halophilic actinobacterium, has been determined. The genome has 4,860,108 bp, a G+C content of 71.0%, and 4,525 open reading frames (ORFs). The clusters of PKS and NRPS genes, responsible for the biosynthesis of a large number of biomolecules, were identified in the genome.


Sign in / Sign up

Export Citation Format

Share Document