scholarly journals Reliable Identification of Environmental Pseudomonas Isolates Using the rpoD Gene

2020 ◽  
Vol 8 (8) ◽  
pp. 1166
Author(s):  
Léa Girard ◽  
Cédric Lood ◽  
Hassan Rokni-Zadeh ◽  
Vera van Noort ◽  
Rob Lavigne ◽  
...  

The taxonomic affiliation of Pseudomonas isolates is currently assessed by using the 16S rRNA gene, MultiLocus Sequence Analysis (MLSA), or whole genome sequencing. Therefore, microbiologists are facing an arduous choice, either using the universal marker, knowing that these affiliations could be inaccurate, or engaging in more laborious and costly approaches. The rpoD gene, like the 16S rRNA gene, is included in most MLSA procedures and has already been suggested for the rapid identification of certain groups of Pseudomonas. However, a comprehensive overview of the rpoD-based phylogenetic relationships within the Pseudomonas genus is lacking. In this study, we present the rpoD-based phylogeny of 217 type strains of Pseudomonas and defined a cutoff value of 98% nucleotide identity to differentiate strains at the species level. To validate this approach, we sequenced the rpoD of 145 environmental isolates and complemented this analysis with whole genome sequencing. The rpoD sequence allowed us to accurately assign Pseudomonas isolates to 20 known species and represents an excellent first diagnostic tool to identify new Pseudomonas species. Finally, rpoD amplicon sequencing appears as a reliable and low-cost alternative, particularly in the case of large environmental studies with hundreds or thousands of isolates.

2020 ◽  
Vol 70 (12) ◽  
pp. 6364-6372
Author(s):  
Ivo Sedláček ◽  
Roman Pantůček ◽  
Michal Zeman ◽  
Pavla Holochová ◽  
Ondrej Šedo ◽  
...  

A group of four psychrotrophic bacterial strains was isolated on James Ross Island (Antarctica) in 2013. All isolates, originating from different soil samples, were collected from the ice-free northern part of the island. They were rod-shaped, Gram-stain-negative, and produced moderately slimy red-pink pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, whole-genome sequencing, MALDI-TOF MS, rep-PCR analyses, chemotaxonomic methods and extensive biotyping was used to clarify the taxonomic position of these isolates. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates belonged to the genus Hymenobacter . The closest relative was Hymenobacter humicola CCM 8763T, exhibiting 98.3 and 98.9% 16S rRNA pairwise similarity with the reference isolates P5342T and P5252T, respectively. Average nucleotide identity, digital DNA–DNA hybridization and core gene distances calculated from the whole-genome sequencing data confirmed that P5252T and P5342T represent two distinct Hymenobacter species. The menaquinone systems of both strains contained MK-7 as the major respiratory quinone. The predominant polar lipids for both strains were phosphatidylethanolamine and one unidentified glycolipid. The major components in the cellular fatty acid composition were summed feature 3 (C16:1 ω7c/C16:1ω6c), C16:1ω5c, summed feature 4 (anteiso-C17:1 B/iso-C17:1 I), anteiso-C15:0 and iso-C15 : 0 for all isolates. Based on the obtained results, two novel species are proposed, for which the names Hymenobacter terrestris sp. nov. (type strain P5252T=CCM 8765T=LMG 31495T) and Hymenobacter lapidiphilus sp. nov. (type strain P5342T=CCM 8764T=LMG 30613T) are suggested.


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3257-3268 ◽  
Author(s):  
Henk C. den Bakker ◽  
Clyde S. Manuel ◽  
Esther D. Fortes ◽  
Martin Wiedmann ◽  
Kendra K. Nightingale

Twenty Listeria -like isolates were obtained from environmental samples collected on a cattle ranch in northern Colorado; all of these isolates were found to share an identical partial sigB sequence, suggesting close relatedness. The isolates were similar to members of the genus Listeria in that they were Gram-stain-positive, short rods, oxidase-negative and catalase-positive; the isolates were similar to Listeria fleischmannii because they were non-motile at 25 °C. 16S rRNA gene sequencing for representative isolates and whole genome sequencing for one isolate was performed. The genome of the type strain of Listeria fleischmannii (strain LU2006-1T) was also sequenced. The draft genomes were very similar in size and the average MUMmer nucleotide identity across 91 % of the genomes was 95.16 %. Genome sequence data were used to design primers for a six-gene multi-locus sequence analysis (MLSA) scheme. Phylogenies based on (i) the near-complete 16S rRNA gene, (ii) 31 core genes and (iii) six housekeeping genes illustrated the close relationship of these Listeria -like isolates to Listeria fleischmannii LU2006-1T. Sufficient genetic divergence of the Listeria -like isolates from the type strain of Listeria fleischmannii and differing phenotypic characteristics warrant these isolates to be classified as members of a distinct infraspecific taxon, for which the name Listeria fleischmannii subsp. coloradonensis subsp. nov. is proposed. The type strain is TTU M1-001T ( = BAA-2414T = DSM 25391T). The isolates of Listeria fleischmannii subsp. coloradonensis subsp. nov. differ from the nominate subspecies by the inability to utilize melezitose, turanose and sucrose, and the ability to utilize inositol. The results also demonstrate the utility of whole genome sequencing to facilitate identification of novel taxa within a well-described genus. The genomes of both subspecies of Listeria fleischmannii contained putative enhancin genes; the Listeria fleischmannii subsp. coloradonensis subsp. nov. genome also encoded a putative mosquitocidal toxin. The presence of these genes suggests possible adaptation to an insect host, and further studies are needed to probe niche adaptation of Listeria fleischmannii .


Author(s):  
Hisami Kobayashi ◽  
Yasuhiro Tanizawa ◽  
Mitsuo Sakamoto ◽  
Moriya Ohkuma ◽  
Masanori Tohno

The taxonomic status of the species Clostridium methoxybenzovorans was assessed. The 16S rRNA gene sequence, whole-genome sequence and phenotypic characterizations suggested that the type strain deposited in the American Type Culture Collection ( C. methoxybenzovorans ATCC 700855T) is a member of the species Eubacterium callanderi . Hence, C. methoxybenzovorans ATCC 700855T cannot be used as a reference for taxonomic study. The type strain deposited in the German Collection of Microorganism and Cell Cultures GmbH (DSM 12182T) is no longer listed in its online catalogue. Also, both the 16S rRNA gene and the whole-genome sequences of the original strain SR3T showed high sequence identity with those of Lacrimispora indolis (recently reclassified from Clostridium indolis ) as the most closely related species. Analysis of the two genomes showed average nucleotide identity based on blast and digital DNA–DNA hybridization values of 98.3 and 87.9 %, respectively. Based on these results, C. methoxybenzovorans SR3T was considered to be a member of L. indolis .


Author(s):  
Anna Werinder ◽  
Anna Aspán ◽  
Robert Söderlund ◽  
Annette Backhans ◽  
Marie Sjölund ◽  
...  

Streptococcus suis is an important bacterial pathogen in pigs that may also cause zoonotic disease in humans. The aim of the study was to evaluate MALDI-TOF MS identification of S. suis case isolates from diseased pigs and tonsil isolates from healthy pigs and wild boar, using sequence analysis methods. Isolates (n=348) which had been classified as S. suis by MALDI-TOF MS were whole-genome sequenced and investigated using analysis of i) the 16S rRNA gene, ii) the recN gene, and iii) whole-genome average nucleotide identity (ANI). Analysis of the 16S rRNA gene indicated that 82.8% (288 out of 348) of the isolates were S. suis , while recN -gene analysis indicated that 75.6% (263 out of 348) were S. suis . ANI analysis classified 44.3% (154 out of 348) as S. suis . In total, 44% (153 out of 348) of the investigated isolates were classified as S. suis by all of the species identification methods employed. The mean MALDI-TOF MS score was significantly higher for the S. suis case isolates compared to the tonsil isolates, however, the difference is of limited practical use. The results show that species confirmation beyond MALDI-TOF MS is needed for S. suis isolates. Since the resolution of 16S rRNA gene analysis is too low for Streptococcus spp., ANI analysis with a slightly lowered cutoff of 94% may be used instead of, or in addition to, recN -gene analysis. Supplementation of the MALDI-TOF MS reference library with mass spectra from S. orisratti , S. parasuis , S. ruminantium , and additional S. suis serotypes, should be considered in order to produce more accurate classifications.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 781-786 ◽  
Author(s):  
Maximo Sánchez ◽  
Martha-Helena Ramírez-Bahena ◽  
Alvaro Peix ◽  
María J. Lorite ◽  
Juan Sanjuán ◽  
...  

Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium . The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium , for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T).


2011 ◽  
Vol 225 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Toshinori Kawanami ◽  
Kazuhiro Yatera ◽  
Kazumasa Fukuda ◽  
Kei Yamasaki ◽  
Masamizu Kunimoto ◽  
...  

2014 ◽  
Vol 81 (1) ◽  
pp. 48-58 ◽  
Author(s):  
Brandee L. Stone ◽  
Nathan M. Russart ◽  
Robert A. Gaultney ◽  
Angela M. Floden ◽  
Jefferson A. Vaughan ◽  
...  

ABSTRACTScant attention has been paid to Lyme disease,Borrelia burgdorferi,Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports ofB. burgdorferiandI. scapularisin North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified asB. burgdorferi sensu latothrough sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileTintergenic spacer region,flaB,ospA,ospC, andp66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected withB. burgdorferiisolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, andB. burgdorferiM3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larvalI. scapularisticks were able to acquireB. burgdorferiM3 from infected mice; M3 was maintained inI. scapularisduring the molt from larva to nymph; and further, M3 was transmitted from infectedI. scapularisnymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectiousB. burgdorferipopulations in eastern North Dakota.


Sign in / Sign up

Export Citation Format

Share Document