scholarly journals Hydrogeochemical Behavior of Reclaimed Highly Reactive Tailings, Part 2: Laboratory and Field Results of Covers Made with Mine Waste Materials

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 589
Author(s):  
Alex Kalonji-Kabambi ◽  
Bruno Bussière ◽  
Isabelle Demers

The possibility of using mine wastes (low-sulfide tailings and waste rocks) as cover components to prevent acid mine drainage (AMD) generation from highly reactive tailings was previously investigated through a laboratory-based characterization of reactive tailings and cover materials (Part 1 of this study). Characterization results showed that the reactive tailings are highly acid-generating, and that the mine waste materials that were used in this study are non-acid-generating and have suitable hydrogeological and geochemical properties to be used in a cover with capillary barrier effects (CCBE). In order to further investigate the use of low-sulfide mining materials in the reclamation of highly reactive tailings, a large laboratory-based column and a field cell simulating a CCBE were constructed. The instrumented field cell used the same configuration and materials as the laboratory column. This paper presents the main findings from 504 days (column test) and three seasons (field test) of monitoring, and compares the hydrogeochemical behavior observed at the two scales. The results show that a CCBE made with low-sulfide mine wastes would be efficient at reducing oxygen fluxes and limiting AMD generation from highly reactive tailings at the laboratory and intermediate scale. However, at these two scales, the concentrations of some contaminants were not reduced to levels of the legally imposed environmental objectives. The results also showed differences in metal and sulfate concentrations in the drainage waters between the laboratory and field scales. The outcomes from this investigation highlight that the previous oxygen flux design targets and the typical configurations of multilayer covers developed for fresh non-oxidized tailings or pre-oxidized tailings may not always be directly applicable for fresh or pre-oxidized highly reactive tailings.

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 596 ◽  
Author(s):  
Alex Kalonji-Kabambi ◽  
Bruno Bussière ◽  
Isabelle Demers

The production of solid mine wastes is an integral part of the extraction and metallurgical processing of ores. The reclamation of highly reactive mine waste, with low neutralizing potential, is still a significant challenge for the mining industry, particularly when natural soils are not available close to the site. Some solid mine wastes present interesting hydro-geotechnical properties which can be taken advantage of, particularly for being used in reclamation covers to control acid mine drainage. The main objective of this research was to evaluate the use of mining materials (i.e., tailings and waste rock) in a cover with capillary barrier effects (CCBE) to prevent acid mine drainage (AMD) from highly reactive tailings. The first part of the project reproduced in this article involves context and laboratory validation of mining materials as suitable for a CCBE, while the companion paper reports laboratory and field results of cover systems made with mining materials. The main conclusions of the Part 1 of this study were that the materials studied (low sulfide tailings and waste rocks) had the appropriate geochemical and hydrogeological properties for use as cover materials in a CCBE. Results also showed that the cover mining materials are not acid-generating and that the LaRonde tailings are highly reactive with pH close to 2, with high concentrations of metals and sulfates.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Srećko Bevandić ◽  
Rosie Blannin ◽  
Jacqueline Vander Auwera ◽  
Nicolas Delmelle ◽  
David Caterina ◽  
...  

Mine wastes and tailings derived from historical processing may contain significant contents of valuable metals due to processing being less efficient in the past. The Plombières tailings pond in eastern Belgium was selected as a case study to determine mineralogical and geochemical characteristics of the different mine waste materials found at the site. Four types of material were classified: soil, metallurgical waste, brown tailings and yellow tailings. The distribution of the mine wastes was investigated with drill holes, pit-holes and geophysical methods. Samples of the materials were assessed with grain size analysis, and mineralogical and geochemical techniques. The mine wastes dominantly consist of SiO2, Al2O3 and Fe2O3. The cover material, comprising soil and metallurgical waste is highly heterogeneous in terms of mineralogy, geochemistry and grain size. The metallurgical waste has a high concentration of metals (Zn: 0.1 to 24 wt.% and Pb: 0.1 to 10.1 wt.%). In the tailings materials, Pb and Zn vary from 10 ppm to 8.5 wt.% and from 51 ppm to 4 wt.%, respectively. The mining wastes comprises mainly quartz, amorphous phases and phyllosilicates, with minor contents of Fe-oxide and Pb- and Zn-bearing minerals. Based on the mineralogical and geochemical properties, the different potential applications of the four waste material types were determined. Additionally, the theoretical economic potential of Pb and Zn in the mine wastes was estimated.


2008 ◽  
Vol 72 (1) ◽  
pp. 467-472 ◽  
Author(s):  
C. Morais ◽  
L. Rosado ◽  
J. Mirão ◽  
A. P. Pinto ◽  
P. Nogueira ◽  
...  

AbstractThis work presents a geochemical study conducted on the abandoned Tinoca Copper mine (southeast Portugal) to evaluate the potential hazard in surrounding areas particularly the effect on the Abrilongo River Dam which receivesthe acid waters from the mine watershed. The characterization of the area was performed over a period of 3 y and involved the study of waters, sediments and mine wastes. A sequential extraction methodology was conducted on the sediments and mine wastes and five elements were selected (Cu, Fe, Zn, Cd and Pb). The statistical and spatial analysis allowed the inference of the affinities between the chemical elements and specific mineralogical phases and to characterize chemical behaviour such as mobility and bioavailability. The results show that the distance to the source (mine-waste deposit), the point of zero charge, and the dynamics of the system are factors that control the behaviour of the elementss tudied. The acid drainage is characterized by an average pH of 2.5 and concentrationsof copper 20 timesgreater than the legal limit for irrigation waters.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 695
Author(s):  
Azzeddine Benahsina ◽  
Yassine Taha ◽  
Rachida Bouachera ◽  
Mohamed Elomari ◽  
Mohammed Abdouh Bennouna

The purpose of this research was to evaluate the possibility of using gold mine waste rocks (GMWRs) as alternative raw material for the manufacturing of fired bricks. The feasibility study was assessed through (i) physical, chemical, mineralogical and environmental characteristics of GMWRs; (ii) determination of the natural clay (NC) substitution effect when using GMWRs; (iii) the effect of the firing temperature on the mechanical and physical properties of the fired bricks. Five mixtures of NC and GMWRs were studied. The percentages of substitution of NC with GMWRs varied from 0 to 100%. The brick specimens were fired at 900 °C, 1000 °C and 1050 °C. The results show that increasing the firing temperature improved the flexural strength and density of the bricks, while the substitution of NC with GMWRs caused a reduction in the mechanical resistance of the bricks and an increase in their porosity and, consequently, their water absorption rate. However, the properties of bricks that contained up to 80 wt% of GMWRs and fired at 1000 °C and 1050 °C satisfied the requirements set by the applicable civil engineering and environmental standards. This was found to be an efficient and sustainable solution to mitigate environmental hazards and better manage mining wastes, concurrently producing marketable products from them, which is in accordance with the circular economy concept.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 403 ◽  
Author(s):  
Shinji Matsumoto ◽  
Hirotaka Ishimatsu ◽  
Hideki Shimada ◽  
Takashi Sasaoka ◽  
Ginting Kusuma

Characterization of mine waste rocks and prediction of acid mine drainage (AMD) play an important role in preventing AMD. Although high-tech analytical methods have been highlighted for mineral characterization and quantification, simple testing methods are still practical ways to perform in a field laboratory in mines. Thus, this study applied some simple testing methods to the characterization of mine wastes and AMD prediction in addition to a leaching test and the sequential extraction test with HCl, HF, and HNO3, which have not been applied for these purposes, focusing on the form of sulfur and the neutralization effects of carbonates. The results of the Acid Buffering Characteristic Curve test supported the changing trend of the pH attributing carbonates only during the first 10 leaching cycles in the leaching test. The change in the Net Acid Generating (NAG) pH in the sequential NAG test reflected the solubility of sulfur in the rocks, providing information on the form of sulfur in the rocks and the acid-producing potential over time. Consequently, the sequential NAG test and sequential extraction with the acids in combination with the current standards tests (Acid Base Accounting and NAG tests) provided important information for preventing AMD.


Author(s):  
D. Sanliyuksel Yucel ◽  
M. A. Yucel ◽  
B. Ileri

In this case study, metal pollution levels in mine wastes at a coal mine site in Etili coal mine (Can coal basin, NW Turkey) are evaluated using geographical information system (GIS) tools. Etili coal mine was operated since the 1980s as an open pit. Acid mine drainage is the main environmental problem around the coal mine. The main environmental contamination source is mine wastes stored around the mine site. Mine wastes were dumped over an extensive area along the riverbeds, and are now abandoned. Mine waste samples were homogenously taken at 10 locations within the sampling area of 102.33 ha. The paste pH and electrical conductivity values of mine wastes ranged from 2.87 to 4.17 and 432 to 2430 μS/cm, respectively. Maximum Al, Fe, Mn, Pb, Zn and Ni concentrations of wastes were measured as 109300, 70600, 309.86, 115.2, 38 and 5.3 mg/kg, respectively. The Al, Fe and Pb concentrations of mine wastes are higher than world surface rock average values. The geochemical analysis results from the study area were presented in the form of maps. The GIS based environmental database will serve as a reference study for our future work.


2020 ◽  
Vol 10 (26) ◽  
Author(s):  
Catherine B. Gigantone ◽  
Marisa J. Sobremisana ◽  
Lorele C. Trinidad ◽  
Veronica P. Migo

Background. Mine waste from abandoned mining sites can cause environmental degradation and ecological imbalance to receiving water bodies. Heavy metal pollution affects local communities and may pose health risks to the general public. An abandoned mining facility in Marinduque, Philippines, situated on the of Mogpog River, continuously deposits mine wastes, which may affect the river and the health of local communities. Objectives. The aim of the present study was to examine the presence and extent of heavy metal contamination from mine wastes in the aquatic ecosystem of the Mogpog River by determining the level of heavy metal concentration in the water, sediments and biota. Methods. Four sampling sites were monitored for heavy metals (copper (Cu), arsenic (As), chromium (Cr) and sulfur (S)) pollution. Several analyses were conducted to determine the heavy metals present in the water, sediment and biota. Atomic absorption spectrophotometry was used for the analysis of Cu concentrations in water. X-ray fluorescence was used for the analysis of total heavy metals in the sediments and biota. Results. An inverse relationship with water and sediment from upstream to downstream of the river were observed. This trend shows deposition of Cu in the sediments as factored by pH. Flora gathered from the riverbanks recorded concentrations of Cu in their leaves and fruits. Conclusions. It has been difficult for the Mogpog River to regain water quality after years of mine waste deposition. Acid mine drainage occurred upstream of the river which affects the speciation of heavy metals. The potential risk of heavy metal exposure to local communities was observed due to the communities' river utilization. Participant Consent. Obtained Ethics Approval. The Office of Vice Chancellor for Research and Extension of University of the Philippines Los Baños approved the study Competing Interests. The authors declare no competing financial interests.


Author(s):  
Lucas M. Garino ◽  
Germán J. Rodari ◽  
Luciano A. Oldecop
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document