scholarly journals Elemental and Mineral Composition of the Barents Sea Recent and Late Pleistocene−Holocene Sediments: A Correlation with Environmental Conditions

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 593
Author(s):  
Liudmila L. Demina ◽  
Olga Dara ◽  
Ramiz Aliev ◽  
Tatiana Alekseeva ◽  
Dmitry Budko ◽  
...  

A comprehensive examination of the elemental (including radionuclides and heavy metals), mineral, and grain-size composition of sediments from different areas of the Barents Sea was performed. Sediment cores were sampled in the Central Deep, Cambridge Strait (Franz Josef Land Archipelago), Russkaya Gavan’ Bay (Novaya Zemlya Archipelago), and Bear Island Trough. We aim to evaluate how the modern and more ancient environmental conditions are reflected in the elemental and mineral composition, as well as to test indicative elemental ratios. The applied methods include elemental analysis using gamma-ray spectroscopy, X-ray fluorescence (XRF), Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), and X-Ray Difractometry XRD analysis of minerals. Difference in sedimentation rates, grain-size composition, and sources of material, are reflected in downcore variation of Si/Al, Mn/Fe, P/Al, Ti/K, and quartz-feldspar ratios. At boundary Early Holocene/Late Deglaciation, intensive bottom currents from the West-Southern shelf areas contributed to increase of Si/Al and Zr/Ca ratios. Distinct growth of the Si/Fe ratio within the sediments deposited over Late Pleistocene to Mid Holocene may be caused by increased contents of the coarse sand material, as well as by abundant fluxes of clay-mineral-loaded glacial meltwater during the main deglaciation phase. The Mn/Fe ratio used as redox proxy, displayed peaks at different depths related to oxygen concentration growth in bottom water.

2021 ◽  
pp. 398-415
Author(s):  
N.V. Politova ◽  
◽  
T.N. Alekseeva ◽  
N.V. Kozina ◽  
M.D. Kravchishina ◽  
...  

The paper presents data from grain size and mineralogical analyzes of surface bottom sediment samples obtained on several cruises of the R/V Akademik Mstislav Keldysh (2016–2018) from different parts of the Barents Sea. Pebble and gravel material is found in surface sediments in the form of impurities scattered throughout the sea. Such a chaotic distribution pattern is apparently associated with ice separation. Coarse material is most common in the Barents Sea off the coast of the Kola Peninsula, off the coast of Novaya Zemlya, Spitsbergen, where it accumulates due to coastal abrasion. In addition, a fraction >1 mm is widespread at depths where fine fractions are stirred and leached. The most common sediments in coastal shallow water are sands. Sands (0.1–1 mm) are widespread in the southern and southeastern regions of the sea, in the region of the Pechora polygon, the Kaninsky shallow water, the Kola Peninsula, and in the northwest, off the coast of Svalbard. With increasing depth, the sands are replaced by mixed sediments with a low admixture of pelite. Pelitic sediments are prevalent in the central part of the sea. Precipitation with a pelitic fraction (<0.01 mm) of more than 50% occupy about 70% of the Barents Sea. They are widespread in deep-sea hollows and trenches, as well as in the numerous fiords of the North Island of Novaya Zemlya and Franz Josef Land. Surface sediments have a predominantly terrigenous composition; only at the border with the Norwegian Sea the proportion of biogenic material increases. The mineral composition of sediments is dominated by quartz and feldspars, clay minerals are mainly represented by illite, smectite and kaolinite.


2019 ◽  
Vol 8 ◽  
pp. 83-94 ◽  
Author(s):  
B.R. Rakishev ◽  
◽  
A.A. Orynbay ◽  
A.M. Auezova ◽  
A.E. Kuttybaev ◽  
...  

Author(s):  
В. Крыленко ◽  
V. Krylenko ◽  
Р. Косьян ◽  
R. Kos'yan ◽  
М. Крыленко ◽  
...  

The results of realized in 2010 field researches of the spatial and time grain-size structure variability of beach and bottom sediments of the bay-bar Anapskaya southern part are presented in this paper. Irretrievable carrying out of sediment particles to depths more than 7 m intensifies with their size decrease to 0,1 mm. As over 70 % bottom and about 60 % beach sediments are presented by fractions less 0,16 mm on bay-bar Anapskaya southern part, namely at this part there is sand material massive carrying out to depth. Potential danger of the investigated site geosystem degradation is revealed.


2020 ◽  
Vol 11 (2) ◽  
pp. 19-27
Author(s):  
A. V Zakharov ◽  
S. E Makhover

Today the issue of energy saving is acute. The main sources of energy are radiant energy of the Sun, wind energy, energy of moving water. Therefore, the issue of solving alternative energy sources is relevant. The article aims to solve the problem by using low-potential heat of the soil mass by means of energy-efficient building constructions - foundations. It is necessary to know the thermal characteristics of soils for this. At the moment, methods for determining the thermophysical properties of inert materials with subsequent practical application in the field of construction have been widely studied, but no one of these methods takes into account the grain-size composition. Thus, the study of the connection between the thermal conductivity and the grain-size composition of the soil is important. The aim of the work is to Estimation of thermal conductivity of sandy soils based on grain-size composition. This article presents an analysis of the dependence of the thermal conductivity of the sandy soil of its grain-size composition. The matrix of experiment planning is made; the methodology and technological sequence of the experiment were tested. Statistical processing of the obtained experimental data was carried out. Based on a series of test experiments, it was concluded that there are two factors competing in its thermal conductivity: an increase in λ due to an increase in the degree of pore filling and a decrease in total heat conductivity due to a decrease in the degree of pore filling. These results suggest that grain-size composition has an impact on the thermal conductivity of the sandy soil. During the experiment, the dependence of the thermal conductivity of sandy soils on their grain-size composition was experimentally established.


Sign in / Sign up

Export Citation Format

Share Document