phenol formaldehyde resin
Recently Published Documents


TOTAL DOCUMENTS

588
(FIVE YEARS 112)

H-INDEX

36
(FIVE YEARS 6)

2022 ◽  
Vol 1049 ◽  
pp. 240-247
Author(s):  
Ivan S. Zherebcov ◽  
Valeriy V. Savin ◽  
Alexander V. Osadchy ◽  
Victoriia A. Chaika ◽  
Vadim Borkovskih

Scientific research and the search for new technologies to increase the level of mechanical and high-temperature properties are ongoing. The article discusses the technology of using carbon materials, pyrolysis and impregnation with phenol-formaldehyde resins. It is shown that the proposed technology makes it possible to achieve a sufficient level of mechanical properties when using low-modulus carbon fabrics after pyrolytic treatment as a prepreg at a temperature treatment no higher than 900 K. Pillowcase and resole phenol-formaldehyde resins were used to impregnate the prepreg. The proposed technology also allows the introduction of alloying additives into the system to improve the properties. An example of the introduction of nitrogen into a composite by adding urotropine to a phenol-formaldehyde resin, which was used to impregnate the composite, is considered.


Author(s):  
Sabarinathan Palaniyappan ◽  
Annamalai Veiravan ◽  
Vishal Kumar ◽  
Nitin Mathusoothanaperumal Sukanya ◽  
Dhinakaran Veeman

Consumption of coated abrasive discs in various automobile and pipe fitting application is increasing, due to its good surface finish. Coated abrasive disc consists of single layer of abrasive grain bonded to a fibre backing. The major portion of the disc is comprised of fibre backing. But the sustainability of the fibre backing is low and is dumped as waste after usage. The present work deals with the removal of resin coating and recovery of fibre backing from the spent coated abrasive discs using physical separation process such as sand blasting technique. Initially, the recovery experiment was carried out based on L16 orthogonal array. The factors and levels chosen for the experiments were erodent pressure (0.2, 0.4, 0.6 and 0.8 MPa), erodent size (36, 60, 80 and 120 grit), disc orientation (30, 45, 60 and 75°) and number of times flexing (5, 10, 15 and 20). The experimental result shows that erodent size and erodent pressure have a major impact on recovery of the fibre backing. The surface structure of the recovered backing was analysed using scanning electron microscopy and optical microscopy. The recovered backing was very much useful for the coated abrasive industry as the flexible backing and support material for abrasive grain coating.


2021 ◽  
Vol 31 (4) ◽  
pp. 1991-2001
Author(s):  
Yong-Sung Oh

A casca da castanha e resíduos de café moído foram avaliados como material de enchimento para produção de adesivo para compensados. Uma resina de fenol-formaldeído (FF) foi formulada em laboratório para fabricação de compensados. As propriedades da resina FF foram sólidos não voláteis, tempo de gelatinização (gel time),viscosidade, etc. A resina FF sintetizada em laboratório foi misturada com extensor, carga e NaOH. Os compensados foram feitos de maneira uniforme com a mistura de resina FF e testados quanto à resistência ao cisalhamento, módulo de ruptura (MOR) e inchamento em espessura, de acordo com as normas coreanas KS F 3101 e KS F 3114. Todos os compensados fabricados com cada tipo de carga apresentaram boas propriedades de resistência física e mecânica. Os resultados dos testes de desempenho indicaram que a casca da castanha e os resíduos de café moído são adequados como carga para produção de adesivo para fabricação de compensados.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dayong Zhang ◽  
Xiaohui Liu ◽  
Xuefeng Bai ◽  
Gang Wang ◽  
Liping Rong ◽  
...  

Purpose The purpose of this study is to investigate the heat resistance and heat-resistant oxygen aging of 4-nitrophthalonitrile-etherified cardanol-phenol-formaldehyde (PPCF) to further use and develop the resin as the matrix resin of high-temperature resistant adhesives and coatings. Design/methodology/approach PPCF resin was synthesized by 4-nitrophthalonitrile and cardanol-phenol-formaldehyde (PCF). The structures of PPCF and PCF were investigated by Fourier transform infrared, differential scanning calorimetry and proton nuclear magnetic resonance. In addition, the heat resistance and processability of PPCF and PCF resins were studied by dynamic mechanical analysis, thermogravimetric analysis, scanning electronic microscopy (SEM), X-ray diffraction (XRD) techniques and rheological studies. Findings The results reveal that PPCF forms a cross-linked network at a lower temperature. PPCF resin has excellent resistance under thermal aging in an air atmosphere and that it still had a certain residual weight after aging at 500°C for 2 h, whereas the PCF resin is completely decomposed. Originality/value 4-Nitrophthalonitrile was introduced into PCF resin, and XRD and SEM were used to investigate the high temperature residual carbon rate and heat-resistant oxygen aging properties of PPCF and PCF resins.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Xiaoyu Bi ◽  
Runzhou Huang

AbstractThe application of light weight particleboard in furniture industry becomes more inevitable because of the requirement to facilitate transportation and assembly by the customer. Herein, a novel method for the fabrication of foaming particleboard was proposed, which is achieved by adding azodicarbonamide (AC) foaming agent into the formulation that consist of oven-dry poplar (Populus alba) particles (with the moisture content about 4%) and phenol formaldehyde resin (PF resin) (solid content of 48%). In this study, the effects of AC foaming agent and adhesive contents incorporation and its content on mechanical, physical and chemical properties of particleboards were investigated. The results showed that the addition of AC foaming agent played a critical role in properties of particleboard and the optimal particleboard performance was achieved at the particleboard density of 0.6 g/cm3, the PF resin amount of 12%, and the AC foaming agent amount of 1%. Furthermore, the pores appeared on the particle surface were the products of the radical pyrolysis of the foaming agent, which has been proved by the FTIR results and the pores also affect the properties of the particleboards.


Sign in / Sign up

Export Citation Format

Share Document