scholarly journals Selected Artificial Intelligence Methods in the Risk Analysis of Damage to Masonry Buildings Subject to Long-Term Underground Mining Exploitation

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 958
Author(s):  
Leszek Chomacki ◽  
Janusz Rusek ◽  
Leszek Słowik

This paper presents an advanced computational approach to assess the risk of damage to masonry buildings subjected to negative kinematic impacts of underground mining exploitation. The research goals were achieved using selected tools from the area of artificial intelligence (AI) methods. Ultimately, two models of damage risk assessment were built using the Naive Bayes classifier (NBC) and Bayesian Networks (BN). The first model was used to compare results obtained using the more computationally advanced Bayesian network methodology. In the case of the Bayesian network, the unknown Directed Acyclic Graph (DAG) structure was extracted using Chow-Liu’s Tree Augmented Naive Bayes (TAN-CL) algorithm. Thus, one of the methods involving Bayesian Network Structure Learning from data (BNSL) was implemented. The application of this approach represents a novel scientific contribution in the interdisciplinary field of mining and civil engineering. The models created were verified with respect to quality of fit to observed data and generalization properties. The connections in the Bayesian network structure obtained were also verified with respect to the observed relations occurring in engineering practice concerning the assessment of the damage intensity to masonry buildings in mining areas. This allowed evaluation of the model and justified the utility of the conducted research in the field of protection of mining areas. The possibility of universal application of the Bayesian network, both in the case of damage prediction and diagnosis of its potential causes, was also pointed out.

Information ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 294 ◽  
Author(s):  
Xingping Sun ◽  
Chang Chen ◽  
Lu Wang ◽  
Hongwei Kang ◽  
Yong Shen ◽  
...  

Since the beginning of the 21st century, research on artificial intelligence has made great progress. Bayesian networks have gradually become one of the hotspots and important achievements in artificial intelligence research. Establishing an effective Bayesian network structure is the foundation and core of the learning and application of Bayesian networks. In Bayesian network structure learning, the traditional method of utilizing expert knowledge to construct the network structure is gradually replaced by the data learning structure method. However, as a result of the large amount of possible network structures, the search space is too large. The method of Bayesian network learning through training data usually has the problems of low precision or high complexity, which make the structure of learning differ greatly from that of reality, which has a great influence on the reasoning and practical application of Bayesian networks. In order to solve this problem, a hybrid optimization artificial bee colony algorithm is discretized and applied to structure learning. A hybrid optimization technique for the Bayesian network structure learning method is proposed. Experimental simulation results show that the proposed hybrid optimization structure learning algorithm has better structure and better convergence.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 462
Author(s):  
Jie Wei ◽  
Yufeng Nie ◽  
Wenxian Xie

The loop cutset solving algorithm in the Bayesian network is particularly important for Bayesian inference. This paper proposes an algorithm for solving the approximate minimum loop cutset based on the loop cutting contribution index. Compared with the existing algorithms, the algorithm uses the loop cutting contribution index of nodes and node-pairs to analyze nodes from a global perspective, and select loop cutset candidates with node-pair as the unit. The algorithm uses the parameter μ to control the range of node pairs, and the parameter ω to control the selection conditions of the node pairs, so that the algorithm can adjust the parameters according to the size of the Bayesian networks, which ensures computational efficiency. The numerical experiments show that the calculation efficiency of the algorithm is significantly improved when it is consistent with the accuracy of the existing algorithm; the experiments also studied the influence of parameter settings on calculation efficiency using trend analysis and two-way analysis of variance. The loop cutset solving algorithm based on the loop cutting contribution index uses the node-pair as the unit to solve the loop cutset, which helps to improve the efficiency of Bayesian inference and Bayesian network structure analysis.


2021 ◽  
Vol 426 ◽  
pp. 35-46
Author(s):  
Xiangyuan Tan ◽  
Xiaoguang Gao ◽  
Zidong Wang ◽  
Chuchao He

2020 ◽  
pp. 003329412097815
Author(s):  
Giovanni Briganti ◽  
Donald R. Williams ◽  
Joris Mulder ◽  
Paul Linkowski

The aim of this work is to explore the construct of autistic traits through the lens of network analysis with recently introduced Bayesian methods. A conditional dependence network structure was estimated from a data set composed of 649 university students that completed an autistic traits questionnaire. The connectedness of the network is also explored, as well as sex differences among female and male subjects in regard to network connectivity. The strongest connections in the network are found between items that measure similar autistic traits. Traits related to social skills are the most interconnected items in the network. Sex differences are found between female and male subjects. The Bayesian network analysis offers new insight on the connectivity of autistic traits as well as confirms several findings in the autism literature.


Author(s):  
Lingchong Jia ◽  
B. Santhosh Kumar ◽  
R. Parthasarathy

Nowadays, in various educational institutions, artificial intelligence technology is applied effectively and successfully. This artificial intelligence improves learning and student development in academic performance. Challenges of the conventional education approach, students’ dependence on teachers in all resources for study, unavailability of professional instructors, and a greater focus on conditioning learning than practical usefulness lead to lower learning performance. In this paper integrated teaching-learning model approach has been proposed using artificial intelligence in student education. It involves speeding up fulfilling education targets by reducing barriers to entry, automating management processes, and maximizing learning performance. The proposed ITLMA method used the naive Bayes algorithm to evaluate the student ranking using a class score, task, project score, and final exam. The result of artificial intelligence-based ITLMA and naive Bayes algorithm hasa high accuracy ratio of 80.1% with less error ratio of 15.7%, high prediction 88.2%, precision 98.2%, and improves student and teacher interaction compared to other existing methods.


Sign in / Sign up

Export Citation Format

Share Document