scholarly journals Effect of Fe2O3 Content and Acid on the Leaching Behavior of Phosphorus from Dephosphorization Slag

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 972
Author(s):  
Shi-Wei Liu ◽  
Ping-Ping Li ◽  
Chuan-Ming Du ◽  
Ning-Ning Lv

Dephosphorization slag contains considerable quantities of valuable components, such as P2O5 and FeOx. To recover P from dephosphorization slag, selective leaching has been adopted to separate the P-concentrating mineral phase. In this study, the effect of Fe2O3 content in slag and acid on the leaching behavior of P from dephosphorization slag was investigated. It was found that a higher Fe2O3 content in slag resulted in a higher P2O5 content in the C2S–C3P solid solution. Increasing the Fe2O3 content in slag promoted the dissolution of P and simultaneously suppressed the dissolution of other elements, facilitating the selective leaching of P. In the hydrochloric acid solution, more than 81% of P could be dissolved from dephosphorization slag at pH 4, and the dissolution ratio of Fe was nearly zero, achieving excellent selective leaching. Although better selective leaching was also realized in the citric acid solution at pH 5, hydrochloric acid was considered the appropriate leaching agent from the perspective of leaching cost. Through selective leaching, almost all the C2S–C3P solid solution was dissolved from dephosphorization slag, and the Fe-bearing matrix phase and magnesioferrite remained in the residue. The residue with low P2O5 content can be reutilized in ironmaking or steelmaking processes.

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1026
Author(s):  
Ning-Ning Lv ◽  
Chuan-Ming Du ◽  
Hui Kong ◽  
Yao-Hui Yu

Separating P2O5 from steelmaking slag is the key to achieving optimum resource utilization of slag. If the P-concentrating 2CaO∙SiO2–3CaO∙P2O5 solid solution was effectively separated, it can be a potential phosphate resource and the remaining slag rich in Fe2O3 and CaO can be reutilized as a flux in steelmaking process. In this study, a low-cost method of selective leaching was adopted, and hydrochloric acid was selected as leaching agent. The dissolution behavior of quenched steelmaking slags with different composition in the acidic solution was investigated and the dissolution mechanism was clarified. It was found that the P dissolution ratio from each slag was higher than those of other elements, achieving an effective separation of P and Fe. The dissolution ratios of P, Ca, and Si decreased as the P2O5 content in slag increased. A higher Fe2O3 content in slag led to a lower P dissolution ratio. Increasing slag basicity facilitated the dissolution of P from slag. The residue mainly composed of matrix phase and the P2O5 content decreased significantly through selective leaching. The P dissolution ratio from slag was primarily determined by the P distribution ratio in the 2CaO∙SiO2–3CaO∙P2O5 solid solution and the precipitation of ferric phosphate in the leachate. The P-concentrating solid solution was effectively separated from quenched steelmaking slag, even though hydrochloric acid was used as leaching agent.


2010 ◽  
Vol 100 (3-4) ◽  
pp. 95-102 ◽  
Author(s):  
Eun-young Kim ◽  
Min-seuk Kim ◽  
Jae-chun Lee ◽  
Kyoungkeun Yoo ◽  
Jinki Jeong

1975 ◽  
Vol 28 (9) ◽  
pp. 1901 ◽  
Author(s):  
SF Lincoln ◽  
AC Sandercock ◽  
DR Stranks

The parameters describing chloride exchange on indium(III), determined by 35Cl N.M.R., are: k(298 K)= (8.8�0+4) x 106 s-1, ΔH? = 45.7�2.3 kJ mol-1 and ΔS? = 42�8 J mol-1 K-1; and k(298 K)= (2.0�0.1)x106 s-1, ΔH? = 37.7�1.9 kJ mol-1, and ΔS? = 3�6 J mol-1 K-1 in 10.95M and 7.00M aqueous hydrochloric acid respectively, calculated from the observed exchange rate kex4[InCl4(H2O)2-].��� For thallium(III) lower limits of kex(219 K) = 1.6 x 106 s-1 and 1.3 x 106 s-1 were obtained in 10.95M and 7.00M aqueous hydrochloric acid, respectively, where [TlCl6]3- is assumed to be the exchanging species.


Sign in / Sign up

Export Citation Format

Share Document