scholarly journals Sulfide Formation as a Result of Sulfate Subduction into Silicate Mantle (Experimental Modeling under High P,T-Parameters)

Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 373 ◽  
Author(s):  
Yuliya Bataleva ◽  
Yuri Palyanov ◽  
Yuri Borzdov

Ca,Mg-sulfates are subduction-related sources of oxidized S-rich fluid under lithospheric mantle P,T-parameters. Experimental study, aimed at the modeling of scenarios of S-rich fluid generation as a result of desulfation and subsequent sulfide formation, was performed using a multi-anvil high-pressure apparatus. Experiments were carried out in the Fe,Ni-olivine–anhydrite–C and Fe,Ni-olivine–Mg-sulfate–C systems (P = 6.3 GPa, T of 1050 and 1450 °C, t = 23–60 h). At 1050 °C, the interaction in the olivine–anhydrite–C system leads to the formation of olivine + diopside + pyrrhotite assemblage and at 1450 °C leads to the generation of immiscible silicate-oxide and sulfide melts. Desulfation of this system results in the formation of S-rich reduced fluid via the reaction olivine + anhydrite + C → diopside + S0 + CO2. This fluid is found to be a medium for the recrystallization of olivine, extraction of Fe and Ni, and subsequent crystallization of Fe,Ni-sulfides (i.e., olivine sulfidation). At 1450 °C in the Ca-free system, the generation of carbonate-silicate and Fe,Ni-sulfide melts occurs. Formation of the carbonate component of the melt occurs via the reaction Mg-sulfate + C → magnesite + S0. It is experimentally shown that the olivine-sulfate interaction can result in mantle sulfide formation and generation of potential mantle metasomatic agents—S- and CO2-dominated fluids, silicate-oxide melt, or carbonate-silicate melt.

Author(s):  
I.A. Ishutin ◽  
A.A. Chepurov ◽  
E.I. Zhimulev

In the present work, microcrystals of synthetic diamond extracted from a metal-diamond composite were investigated. A composite based on Cu and Fe was obtained by sintering at a pressure of 4 GPa and a temperature of1300 °C. The experiments were carried out using a split-sphere high-pressure apparatus BARS. The high-pressure cell was made of refractory oxides ZrO2, CaO, and MgO using a tubular graphite heater. In the composite, diamond grains were in close contact with neighboring diamonds, and the metal phase filled the interstices. The study of the diamond crystals demonstrated the appearance of newly formed micromorphological structures on the surfaces in the form of numerous cavities of irregular shape on the faces of octahedron, as well as pyramids on the faces of cube, the morphological elements of which follow the contours of the cube face of the diamond. Thus, the results of the work evidence for the processes of etching of the diamond crystals during the experiments, which is associated with the presence of metallic iron in the composite. This type of etching forms a roughly cavernous surface on the diamond crystals, which can be considered as an additional factor for improving the metal-diamond bond in copper-based composites.


2010 ◽  
Vol 27 (6) ◽  
pp. 1157-1165 ◽  
Author(s):  
L. Ruffine ◽  
J.P. Donval ◽  
J.L. Charlou ◽  
A. Cremière ◽  
B.H. Zehnder

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1267
Author(s):  
Yuliya V. Bataleva ◽  
Ivan D. Novoselov ◽  
Yuri M. Borzdov ◽  
Olga V. Furman ◽  
Yuri N. Palyanov

Experimental modeling of ankerite–pyrite interaction was carried out on a multi-anvil high-pressure apparatus of a “split sphere” type (6.3 GPa, 1050–1550 °C, 20–60 h). At T ≤ 1250 °C, the formation of pyrrhotite, dolomite, magnesite, and metastable graphite was established. At higher temperatures, the generation of two immiscible melts (carbonate and sulfide ones), as well as graphite crystallization and diamond growth on seeds, occurred. It was established that the decrease in iron concentration in ankerite occurs by extraction of iron by sulfide and leads to the formation of pyrrhotite or sulfide melt, with corresponding ankerite breakdown into dolomite and magnesite. Further redox interaction of Ca,Mg,Fe carbonates with pyrrhotite (or between carbonate and sulfide melts) results in the carbonate reduction to C0 and metastable graphite formation (±diamond growth on seeds). It was established that the ankerite–pyrite interaction, which can occur in a downgoing slab, involves ankerite sulfidation that triggers further graphite-forming redox reactions and can be one of the scenarios of the elemental carbon formation under subduction settings.


2019 ◽  
Vol 125 ◽  
pp. 92-101 ◽  
Author(s):  
Shuaiwei Gu ◽  
Yuxing Li ◽  
Lin Teng ◽  
Cailin Wang ◽  
Qihui Hu ◽  
...  

2015 ◽  
Vol 35 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Alexander G. Sokol ◽  
Yury M. Borzdov ◽  
Yury N. Palyanov ◽  
Alexander F. Khokhryakov

Author(s):  
Carl B Agee

Hydrous silicate melts appear to have greater compressibility relative to anhydrous melts of the same composition at low pressures (<2 GPa); however, at higher pressures, this difference is greatly reduced and becomes very small at pressures above 5 GPa. This implies that the pressure effect on the partial molar volume of water in silicate melt is highly dependent on pressure regime. Thus, H 2 O can be thought of as the most compressible ‘liquid oxide’ component in silicate melt at low pressure, but at high pressure its compressibility resembles that of other liquid oxide components. A best-fit curve to the data on from various studies allows calculation of hydrous melt compression curves relevant to high-pressure planetary differentiation. From these compression curves, crystal–liquid density crossovers are predicted for the mantles of the Earth and Mars. For the Earth, trapped dense hydrous melts may reside atop the 410 km discontinuity, and, although not required to be hydrous, atop the core–mantle boundary (CMB), in accord with seismic observations of low-velocity zones in these regions. For Mars, a density crossover at the base of the upper mantle is predicted, which would produce a low-velocity zone at a depth of approximately 1200 km. If perovskite is stable at the base of the Martian mantle, then density crossovers or trapped dense hydrous melts are unlikely to reside there, and long-lived, melt-induced, low-velocity regions atop the CMB are not predicted.


Sign in / Sign up

Export Citation Format

Share Document