oxide melt
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 36)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 64 (10) ◽  
pp. 768-777
Author(s):  
L. A. Makrovets ◽  
O. V. Samoilova ◽  
G. G. Mikhailov ◽  
I. V. Bakin

Phase diagram of the ternary oxide system FeO - SrO -Al2O3 was constructed for the first time. In this system, the following compounds can be formed: hercynite FeAl2O4 and five strontium aluminates - Sr4Al2O7 , Sr3Al2O6 , SrAl2O4 , SrAl4O7 , SrAl12O19 . According to the calculations performed, solid solutions of oxides are not formed in the system, as it is confirmed by the literature data. In the course of modeling, the optimal energy parameters of the theory of subregular ionic solutions were selected for the components of the oxide melt (FeO, SrO, Al2O3 ). Thermodynamic analysis of strontium deoxidizing ability in liquid iron at presence of aluminum was carried out using the technique for constructing the surface of solubility of strontium and aluminum in metal for steelmaking temperatures (1550 and 1600 °C) and carbon concentrations of 0.1 and 0.4 %. The equilibrium constants of the reactions of formation of strontium aluminates Sr3Al2O6 and SrAl2O4 from the components of the metal melt were calculated for the temperature range of 1550 - 1650 °C. It was found that the rest of strontium aluminates can be formed in liquid metal only at temperatures above 1750 °C. The base of thermodynamic data for the studied systems is given: temperature dependences of equilibrium constants for reactions occurring between components; values of interaction parameters of the first order (according to Wagner) for elements in liquid iron; values of energy parameters of the theory of subregular ionic solutions (for oxide melt). It follows from the calculations that the formation of strontium monoaluminate SrAl2O4 and corundum Al2O3 is most probable as the interaction products in Fe -Al - Sr - O and Fe -Al - Sr - C - O systems.


Author(s):  
Xianghui Zhang ◽  
Andrew Strzelecki ◽  
Cody Cockreham ◽  
Vitaliy Goncharov ◽  
Houqian Li ◽  
...  

Zeolites with encapsulated transition metal species are extensively applied in the chemical industry as heterogenous catalysts for favorable kinetic pathways. To elucidate the energetic insights into formation of subnano-sized molybdenum trioxide (MoO) encapsulated/confined in zeolite Y (FAU) from constituent oxides, we performed a systematic experimental thermodynamic study using high temperature oxide melt solution calorimetry as the major tool. Specifically, the formation enthalpy of each MoO/FAU is less endothermic than corresponding zeolite Y, suggesting enhanced thermodynamic stability. As Si/Al ratio increases, the enthalpies of formation of MoO/FAU with identical loading (5 Mo-wt%) tend to be less endothermic, ranging from 61.1 ± 1.8 (Si/Al = 2.9) to 32.8 ± 1.4 kJ/mol TO (Si/Al = 45.6). Coupled with spectroscopic, structural and morphological characterizations, we revealed intricate energetics of MoO – zeolite Y guest – host interactions likely determined by the subtle redox and/or phase evolutions of encapsulated MoO.


Author(s):  
Xianghui Zhang ◽  
Andrew Strzelecki ◽  
Cody Cockreham ◽  
Vitaliy Goncharov ◽  
Houqian Li ◽  
...  

Zeolites with encapsulated transition metal species are extensively applied in the chemical industry as heterogenous catalysts for favorable kinetic pathways. To elucidate the energetic insights into formation of subnano-sized molybdenum trioxide (MoO) encapsulated/confined in zeolite Y (FAU) from constituent oxides, we performed a systematic experimental thermodynamic study using high temperature oxide melt solution calorimetry as the major tool. Specifically, the formation enthalpy of each MoO/FAU is less endothermic than corresponding zeolite Y, suggesting enhanced thermodynamic stability. As Si/Al ratio increases, the enthalpies of formation of MoO/FAU with identical loading (5 Mo-wt%) tend to be less endothermic, ranging from 61.1 ± 1.8 (Si/Al = 2.9) to 32.8 ± 1.4 kJ/mol TO (Si/Al = 45.6). Coupled with spectroscopic, structural and morphological characterizations, we revealed intricate energetics of MoO – zeolite Y guest – host interactions likely determined by the subtle redox and/or phase evolutions of encapsulated MoO.


2021 ◽  
Vol 64 (7) ◽  
pp. 488-497
Author(s):  
A. S. Vusikhis ◽  
L. I. Leont’ev ◽  
E. N. Selivanov

The paper presents the thermodynamic modeling results of zinc and iron reduction from B2O3 ‒ CaO ‒ Fe2O3 ‒ ZnО melts by CO ‒ CO2 and H2 ‒ H2O mixtures containing 0 – 60 % CO2 (H2O) at 1273 – 1673 K using a technique describing the reduction of metals from an oxide melt by gas in bubbling processes, under conditions that provide an approximation to real systems. Its originality is equilibrium determination for each individual portion of gas supplied into the working fluid. The reducible metals oxides content in each calculation cycle is taken from the previous data. During the calculations, changes in the content of zinc (СZnO ) and iron (СFe2O3 , СFe3O4 and СFeO ) oxides in the melt and the degree of their reduction were estimated. When using CO or H2 as a reducing agent, this process proceeds in three stages. In the first stage, Fe2O3 is reduced to Fe3O4 and FeO. CFe2O3 values decrease to almost zero, while CFe3O4 and CFeO increase simultaneously. By the end of the stage, СFe3O4 reaches its maximum value. At the second stage, the Fe3O4 → FeO transition occurs, when СFeO values reach its maximum. At these stages, there is a slight increase in the CZnO . At the third stage, the values CFeO and CZnO decrease, and iron and zinc are reduced. An increase in temperature dramatically reduces the gas consumption for zinc reduction by 2 – 3 times, and the replacement of CO with H2 reduces it by less than 20 %. In the presence of oxidizing agents (CO or H2O), only zinc is reduced. The process ends when the final content of zinc oxide in the melt corresponds to the equilibrium with the initial gas composition. The higher the temperature, the less CZnO is. The obtained data are useful for the development of technologies for the selective recovery of metals.


2021 ◽  
Vol 410 ◽  
pp. 725-729
Author(s):  
Larisa A. Makrovets ◽  
Olga V. Samoilova ◽  
Igor V. Bakin

Thermodynamic modeling of phase equilibria with the subsequent construction of the phase diagram of the SrO–Al2O3 system has been carried out. To calculate the activities of the oxide melt in the course of this work, we used the approximation of the theory of subregular ionic solutions, with the most optimal values of the energy parameters Q1112 = –104 349: Q1122 = –217 689; Q1222 = –104 436 J/mole. The results obtained for the liquidus line in this work are in good agreement with the literature experimental data. In the course of the calculation, the values of the equilibrium constants for the formation of strontium aluminates from the components of the oxide melt were estimated.


2021 ◽  
Vol 64 (6) ◽  
pp. 413-419
Author(s):  
L. A. Makrovets ◽  
O. V. Samoilova ◽  
G. G. Mikhailov ◽  
I. V. Bakin

At the moment, to improve quality of metal (especially low-alloyed), out-of-furnace steel processing technologies are used with complex alloys utilization, which include alkaline earth metals (ALM) in addition to silicon. Study of strontium additives effect on deoxidation and liquid steel modification processes is one of the promising areas of research in field of metallurgical technologies. Thermodynamic modeling of phase equilibria in Fe – Sr – Si –C– O system melt was carried out using method of constructing surface of components solubility in metal. Solubility surface determines stability limits of non-metallic phases formed during deoxidation, depending on composition of liquid metal of the studied system. The  calculation was carried out using equilibrium constants of reactions occurring in the melt during deoxidation, as well as the first order interaction parameters (according to Wagner) of elements in liquid iron. Activity of the oxide melt components was determined using theory of subregular ionic solutions. Activity of the gas phase was calculated taking into account partial pressures. Simulations were performed for two temperatures (1550 and 1600  °C) for fixed carbon concentrations (0 (no carbon in liquid iron) and 0.1 % (low-carbon metal melt)). It has been shown that, in comparison with silicon, strontium is stronger deoxidizing agent in liquid metal. According to the simulation results, liquid oxide non-metallic inclusions of variable composition or strontium ortho- and metasilicates Sr2SiO4 and SrSiO3 (with an increase in strontium concentration) should be the main oxide phases in deoxidation products. Decrease in the temperature of liquid metal leads to changes in phase formation (formation of SrSiO3 silicate becomes possible).


2021 ◽  
Vol 64 (5) ◽  
pp. 353-359
Author(s):  
A. S. Vusikhis ◽  
L. I. Leont’ev ◽  
E. N. Selivanov

To predict the conditions for metals reduction from an oxide melt by gas in bubbling processes, a thermodynamic modeling technique has been developed that provides an approximation to real systems. The main difference between the accepted method and the well-known one is in conducting successive calculation cycles with withdrawal of the generated gases and the metal phase from the working medium. This paper presents the results of thermodynamic modeling of nickel and iron reduction processes from B2O3 – CaO– Fe2O3 – NiO melts by mixtures of CO– CO2 and H2 – H2O containing 0 – 60 % CO2 (H2O) in the temperature range of 1273 – 1673 K. The calculations evaluated the content of nickel and iron oxides in the melt and the degree of their reduction. It is shown that, regardless of the gas composition, this process proceeds in several stages. At the first stage, Fe2O3 is reduced to Fe3O4 and FeO. СFe2O3 values decrease to almost zero, while СFe3O4 and CFeO increase simultaneously. By the end of the phase, СFeO reaches its maximum value. At the second stage, the Fe3O4 → FeO transition occurs, when СFe3O4 values reach maximum, nickel and iron begin to reduce to metal. At reduction by CO– CO2 mixture, an increase in temperature reduces the metallization of both nickel and iron. Similarly, an increase in the CO2 content of the introduced gas affects. During interaction of the oxide melt with a gas containing 60 % CO2 , the third stage is absent. At reduction by H2 – H2O mixture, an increase in temperature reduces the metallization of nickel, but increases metallization of iron. With increasing water vapor content in the introduced gas, the degree of metallization of both nickel and iron decreases. The obtained data are useful for creating technologies for selective reduction of metals and formation of ferronickel of the required composition.


Author(s):  
Xianghui Zhang ◽  
Vitaliy Goncharov ◽  
Cody Cockreham ◽  
Houqian Li ◽  
Junming Sun ◽  
...  

Zeolites with encapsulated transition metal species are extensively applied in the chemical industry as heterogenous catalysts for favorable kinetic pathways. To elucidate the energetic insights into formation of subnano-sized molybdenum trioxide (MoO3) encapsulated/confined in zeolite Y (FAU) from constituent oxides, we performed a systematic experimental thermodynamic study using high temperature oxide melt solution calorimetry as the major tool. Specifically, the formation enthalpy of each MoO3/FAU is less endothermic than corresponding zeolite Y, suggesting enhanced thermodynamic stability. As Si/Al ratio increases, the enthalpies of formation of MoO3/FAU with identical MoO3 loading tends to be less endothermic, ranging from 61.1 ± 1.8 (Si/Al = 2.9) to 32.8 ± 1.4 kJ/mol TO2 (Si/Al = 45.6). Coupled with spectroscopic, structural and morphological characterizations, and catalytic performance tests, we revealed intricate energetics of MoO3 – zeolite Y guest – host interactions and catalytic performance governed by the phase evolutions of encapsulated MoO3.


2021 ◽  
pp. 18-22
Author(s):  
A. S. Vusikhis ◽  
E. N. Selivanov ◽  
L. I. Leontiev ◽  
S. N. Tyushnyakov

For predicting the results of sparging processes to understand how much metal can be reduced from oxide melt, a method of thermodynamic modelling has been developed that ensures approximation to real systems in which the metallic phase and gases are removed from the liquid at a certain interval. The key principle of this method is that equilibrium is determined for every single portion of introduced gas, and the concentration of oxides of the reduced metals in each cycle is taken from the previous data. Such approach enables a very close simulation of real processes so that one can have an idea about the quality of reactions taking place in pyrometallurgical units. When the thermodynamic modelling method was applied to the processes of iron and nickel reduction, the obtained results well matched the experimental data. A comparative analysis was carried out to understand how the temperature T and the amount of introduced gas VСО or VН2 influence the process of zinc reduction from oxide melt. For the purposes of modelling, a B2O3 – CaO – ZnO melt was used with the B2O3/CaO ratio equal to 3 (which corresponds to the eutectic composition) and with the initial ZnO concentration in the range from 3 to 12 %; the temperature range used was 1273–1673 K. The concentration of zinc oxide СZnO in the melt, as well as the reduction degree Zn were analyzed. The correlation dependences СZnO, φZn = f(C0, T, VCO or VH2) are presented in the form of second order polynomials. Reduction of zinc with hydrogen is a more intense process than when zinc is reduced with carbon monoxide. Therefore, less gas is required to reach a similar reduction degree. A higher temperature facilitates the reduction of zinc while less СО or Н2 is required to achieve the target reduction degree φZn. Irrespective of the initial composition of the melt, it takes 1.5 times less hydrogen that carbon monoxide to obtain the unit mass of zinc with the process temperature being the same. The obtained data explain the changing zinc distillation performance when changing the temperature. The established relationships between CZnO and φZn and the temperature and the amount of introduced gas are useful for predicting the zinc distillation performance and can be used as basic relationships for analyzing experimental data. This research was funded by the Russian Foundation for Basic Research under the Project No. 18-29-24093мк.


2021 ◽  
pp. 21-25
Author(s):  
S. S. Naboychenko ◽  
А. А. Korolev ◽  
K. L. Timofeev ◽  
S. A. Krayukhin

Today, in order to optimize the production of copper, zinc, and lead, as well as to reduce the circulation of associated metal impurities (such as antimony, tin, bismuth and others) between the processing facilities, an ever greater attention is given to the development and implementation of processing schemes that would enable to extract associated metals and use them to produce commodities. In connection with the above, a process has been developed and tested for processing lead refining slags which include, %: 25–30 Sb, 2–10 Pb, 1–8 Sn, 3–12 As, 0.1–0.2 Cu. The resultant products included the Su-2, Su-1 and Su-0 grades of antimony or antimonous oxide. It was found that the forms in which antimony was present in the untreated slag included Sb2O3, Sb2O4, Sb2O5 and NaSb(OH)6. A hydrometallurgical process based on the use of sulphide alkaline solutions was taken as the basic slag processing technique. It is proposed to wash the slag additionally before leaching to remove arsenic from antimony, and to use the electrowinning stage to separate tin from antimony. Regimes have been identified for obtaining cathode deposits containing 96–99% Sb, with the recovery of antimony from untreated slag being 67%. The cathode deposits were refined with the help of pyrometallurgical methods and electrolysis in sulphate-fluoride media. The paper also considers the possibility of obtaining antimonous oxide by oxidizing the antimonous oxide melt and recovering Sb2O3 from exhaust gases. Based on the findings and the results of the tests, Uralelectromed is now working on designing a slag processing facility.


Sign in / Sign up

Export Citation Format

Share Document