scholarly journals On the Application of the Particle Swarm Optimization to the Inverse Determination of Material Model Parameters for Cutting Simulations

Modelling ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 129-148
Author(s):  
Marvin Hardt ◽  
Deepak Jayaramaiah ◽  
Thomas Bergs

The manufacturing industry is confronted with increasing demands for digitalization. To realize a digital twin of the cutting process, an increase of the model reliability of the virtual representation becomes necessary. Thereby, different models are required to represent the experimental behavior of the workpiece material or frictional interactions. One of the most utilized material models is the Johnson–Cook material model. The material model parameters are determined either by conventional or by non-conventional material tests, or inversely from the cutting process. However, the inverse parameter determination, where the model parameters are iteratively modified until a sufficient agreement between experimental and numerical results is reached, is not robust and requires a high number of iterations. In this paper, an approach for the inverse determination of material model parameters based on the Particle Swarm Optimization (PSO) is presented. The approach was investigated by the inverse re-identification of an initial parameter set. The conducted investigations showed that a material model parameter set can be determined within a small number of iterations. Thereby, the determined material model parameters resulted in deviations of approximately 1% in comparison to their target values. It was shown that the PSO is suitable for the inverse material parameter determination from cutting simulations.

2021 ◽  
Vol 127 (9) ◽  
Author(s):  
Linyang Wei ◽  
Guojun Li ◽  
Miaomiao Song ◽  
Cun-Hai Wang ◽  
Weijun Zhang

Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 321 ◽  
Author(s):  
Xin Lai ◽  
Wei Yi ◽  
Yuejiu Zheng ◽  
Long Zhou

In this paper, a novel model parameter identification method and a state-of-charge (SOC) estimator for lithium-ion batteries (LIBs) are proposed to improve the global accuracy of SOC estimation in the all SOC range (0–100%). Firstly, a subregion optimization method based on particle swarm optimization is developed to find the optimal model parameters of LIBs in each subregion, and the optimal number of subregions is investigated from the perspective of accuracy and computation time. Then, to solve the problem of a low accuracy of SOC estimation caused by large model error in the low SOC range, an improved extended Kalman filter (IEKF) algorithm with variable noise covariance is proposed. Finally, the effectiveness of the proposed methods are verified by experiments on two kinds of batteries under three working cycles, and case studies show that the proposed IEKF has better accuracy and robustness than the traditional extended Kalman filter (EKF) in the all SOC range.


2018 ◽  
Vol 13 ◽  
pp. 174830181879706 ◽  
Author(s):  
Song Qiang ◽  
Yang Pu

In this work, we summarized the characteristics and influencing factors of load forecasting based on its application status. The common methods of the short-term load forecasting were analyzed to derive their advantages and disadvantages. According to the historical load and meteorological data in a certain region of Taizhou, Zhejiang Province, a least squares support vector machine model was used to discuss the influencing factors of forecasting. The regularity of the load change was concluded to correct the “abnormal data” in the historical load data, thus normalizing the relevant factors in load forecasting. The two parameters are as follows Gauss kernel function and Eigen parameter C in LSSVM had a significant impact on the model, which was still solved by empirical methods. Therefore, the particle swarm optimization was used to optimize the model parameters. Taking the error of test set as the basis of judgment, the optimization of model parameters was achieved to improve forecast accuracy. The practical examples showed that the method in the work had good convergence, forecast accuracy, and training speed.


Sign in / Sign up

Export Citation Format

Share Document