scholarly journals Synthesis, in Vitro Antimycobacterial and Antibacterial Evaluation of IMB-070593 Derivatives Containing a Substituted Benzyloxime Moiety

Molecules ◽  
2013 ◽  
Vol 18 (4) ◽  
pp. 3872-3893 ◽  
Author(s):  
Zengquan Wei ◽  
Jian Wang ◽  
Mingliang Liu ◽  
Sujie Li ◽  
Lanying Sun ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1772
Author(s):  
Hui Lu ◽  
Xia Zhou ◽  
Lei Wang ◽  
Linhong Jin

A series of new N-phenylacetamide derivatives containing 4-arylthiazole moieties was designed and synthesized by introducing the thiazole moiety into the amide scaffold. The structures of the target compounds were confirmed by 1H-NMR, 13C-NMR and HRMS. Their in vitro antibacterial activities were evaluated against three kinds of bacteria—Xanthomonas oryzae pv. Oryzae (Xoo), Xanthomonas axonopodis pv. Citri (Xac) and X.oryzae pv. oryzicola (Xoc)—showing promising results. The minimum 50% effective concentration (EC50) value of N-(4-((4-(4-fluoro-phenyl)thiazol-2-yl)amino)phenyl)acetamide (A1) is 156.7 µM, which is superior to bismerthiazol (230.5 µM) and thiodiazole copper (545.2 µM). A scanning electron microscopy (SEM) investigation has confirmed that compound A1 could cause cell membrane rupture of Xoo. In addition, the nematicidal activity of the compounds against Meloidogyne incognita (M. incognita) was also tested, and compound A23 displayed excellent nematicidal activity, with mortality of 100% and 53.2% at 500 μg/mL and 100 μg/mL after 24 h of treatment, respectively. The preliminary structure-activity relationship (SAR) studies of these compounds are also briefly described. These results demonstrated that phenylacetamide derivatives may be considered as potential leads in the design of antibacterial agents.


2016 ◽  
Vol 64 (11) ◽  
pp. 1589-1596 ◽  
Author(s):  
Pooneh Khaligh ◽  
Peyman Salehi ◽  
Morteza Bararjanian ◽  
Atousa Aliahmadi ◽  
Hamid Reza Khavasi ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Har Lal Singh ◽  
Jangbhadur Singh ◽  
A. Mukherjee

The present work stems from our interest in the synthesis, characterization, and antibacterial evaluation of organosilicon(IV) complexes of a class of amino-acid-based Schiff base which have been prepared by the interaction of ethoxytrimethylsilane with the Schiff bases (N OH) in 1 : 1 molar ratio. These complexes have been characterized by elemental analysis, molar conductance, and spectroscopic studies including electronic IR and NMR (1H,13C, and29Si) spectroscopy. The analytical and spectral data suggest trigonal bipyramidal geometry around the silicon atom in the resulting complexes. The ligands and their organosilicon complexes have also been evaluated forin vitroantimicrobial activity against bacteria (Bacillus cereus,Nocardiaspp.,E. aerogenes,Escherichia coli,Klebsiellaspp., andStaphylococcusspp.). The complexes were found to be more potent as compared to the ligands.


Sign in / Sign up

Export Citation Format

Share Document