scholarly journals 3,5-Diethoxy-3′-Hydroxyresveratrol (DEHR) Ameliorates Liver Fibrosis via Caveolin-1 Activation in Hepatic Stellate Cells and in a Mouse Model of Bile Duct Ligation Injury

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2833 ◽  
Author(s):  
Phil Lee ◽  
Hye-Jin Park ◽  
Namki Cho ◽  
Hong Kim

Hepatic stellate cells (HSCs) are involved in the pathogenesis of liver fibrosis. Resveratrol, 3,5,4′-trihydroxystilbene, is a dietary polyphenol found in natural food products. Here, we evaluated the anti-proliferative effects of a synthetic resveratrol derivative, 3,5-diethoxy-3′-hydroxyresveratrol (DEHR), on HSCs. Flow cytometry and Western blot analyses showed that DEHR induces apoptosis through the upregulation of cleaved caspase-3 and poly (ADP-ribose) polymerase expression and reduction in the level of an anti-apoptotic protein B-cell lymphoma 2 (Bcl2). As caveolin-1 (CAV1), a competitive inhibitor of heme oxygenase 1 (HO-1), is related to apoptotic proteins in hepatic cells, we focused on the role of CAV1 in DEHR-induced apoptosis in HSCs through Western blot analyses. Our results showed that the inhibitory effect of DEHR on cell viability was stronger in HO-1 siRNA-transfected cells but weakened in CAV1 siRNA-transfected cells. Collagen concentration was significantly reduced, whereas CAV1 expression increased after treatment of a bile duct ligation injury-induced liver fibrosis model with DEHR for four weeks. We confirmed that DEHR treatment significantly reduced fibrous hyperplasia around the central veins, using hematoxylin and eosin and Sirius red staining. DEHR ameliorates liver fibrosis in vitro and in vivo, possibly through a mechanism involving CAV1.

2008 ◽  
Vol 134 (4) ◽  
pp. A-795
Author(s):  
Erwin Gäbele ◽  
Matthias Froh ◽  
Reiner Wiest ◽  
Florian Obermeier ◽  
Jürgen Schölmerich ◽  
...  

2001 ◽  
Vol 280 (6) ◽  
pp. G1209-G1216 ◽  
Author(s):  
Vijay Shah ◽  
Sheng Cao ◽  
Helen Hendrickson ◽  
Janet Yao ◽  
Zvonimir S. Katusic

In carbon tetrachloride-induced liver cirrhosis, diminution of hepatic endothelial nitric oxide synthase (eNOS) activity may contribute to impaired hepatic vasodilation and portal hypertension. The mechanisms responsible for these events remain unknown; however, a role for the NOS-associated proteins caveolin and calmodulin has been postulated. The purpose of this study is to characterize the expression and cellular localization of the NOS inhibitory protein caveolin-1 in normal rat liver and to then examine the role of caveolin in conjunction with calmodulin in regulation of NOS activity in cholestatic portal hypertension. In normal liver, caveolin protein is expressed preferentially in nonparenchymal cells compared with hepatocytes as assessed by Western blot analysis of isolated cell preparations. Additionally, within the nonparenchymal cell populations, caveolin expression is detected within both liver endothelial cells and hepatic stellate cells. Next, studies were performed 4 wk after bile duct ligation (BDL), a model of portal hypertension characterized by prominent cholestasis, as evidenced by a significant increase in serum cholesterol in BDL animals. After BDL, caveolin protein levels from detergent-soluble liver lysates are significantly increased as assessed by Western blot analysis. Immunoperoxidase staining demonstrates that this increase is most prominent within sinusoids and venules. Additionally, caveolin-1 upregulation is associated with a significant reduction in NOS catalytic activity in BDL liver lysates, an event that is corrected with provision of excess calmodulin, a protein that competitively binds eNOS from caveolin. We conclude that, in cholestatic portal hypertension, caveolin may negatively regulate NOS activity in a manner that is reversible by excess calmodulin.


2010 ◽  
Vol 53 (4) ◽  
pp. 702-712 ◽  
Author(s):  
Jonel Trebicka ◽  
Martin Hennenberg ◽  
Margarete Odenthal ◽  
Khanwali Shir ◽  
Sabine Klein ◽  
...  

2019 ◽  
Vol 12 (605) ◽  
pp. eaax1194 ◽  
Author(s):  
Balamurugan Sundaram ◽  
Kristina Behnke ◽  
Andrea Belancic ◽  
Mazin A. Al-Salihi ◽  
Yasser Thabet ◽  
...  

Chronic liver disease can induce prolonged activation of hepatic stellate cells, which may result in liver fibrosis. Inactive rhomboid protein 2 (iRhom2) is required for the maturation of A disintegrin and metalloprotease 17 (ADAM17, also called TACE), which is responsible for the cleavage of membrane-bound tumor necrosis factor–α (TNF-α) and its receptors (TNFRs). Here, using the murine bile duct ligation (BDL) model, we showed that the abundance of iRhom2 and activation of ADAM17 increased during liver fibrosis. Consistent with this, concentrations of ADAM17 substrates were increased in plasma samples from mice after BDL and in patients suffering from liver cirrhosis. We observed increased liver fibrosis, accelerated disease progression, and an increase in activated stellate cells after BDL in mice lacking iRhom2 (Rhbdf2−/−) compared to that in controls. In vitro primary mouse hepatic stellate cells exhibited iRhom2-dependent shedding of the ADAM17 substrates TNFR1 and TNFR2. In vivo TNFR shedding after BDL also depended on iRhom2. Treatment of Rhbdf2−/− mice with the TNF-α inhibitor etanercept reduced the presence of activated stellate cells and alleviated liver fibrosis after BDL. Together, these data suggest that iRhom2-mediated inhibition of TNFR signaling protects against liver fibrosis.


2009 ◽  
Vol 102 (08) ◽  
pp. 389-396 ◽  
Author(s):  
Naoko Watanabe ◽  
Yukio Kume ◽  
Yumiko Satoh ◽  
Makoto Kaneko ◽  
Daiya Takai ◽  
...  

SummaryAlthough hepatic stellate cells, endothelial cells, glomerular podocytes and plateles were reported to be a source of ADAMTS13, it is not clarified which source is involved in the regulation of plasma ADAMTS13 activity. It was demonstrated previously that selective hepatic stellate cell damage in rats caused decreased plasma ADAMTS13 activity.To further elucidate the potential contribution of hepatic stellate cells to the regulation of plasma ADAMTS13 activity, this study examined plasma ADAMTS13 activity when hepatic stellate cells proliferate during the process of liver fibrosis by employing rat models of liver fibrosis due to cholestasis, bile duct ligation, and steatohepatitis, a choline-deficient L-amino acid-defined-diet. ADAMTS13 expression was increased with co-localisation with smooth muscle α-actin, a marker of hepatic stellate cells, in bile duct-ligated livers up to four weeks, in which a close correlation between ADAMTS13 and smooth muscle α-actin mRNA expressions was determined. Plasma ADAMTS13 activity, measured by a sandwich ELISA involving a specific substrate to ADAMTS13, was increased in bile duct-ligated rats with a significant correlation with ADAMTS13 mRNA expression levels in the liver. Furthermore, ADAMTS13 mRNA expression was increased with enhanced mRNA expression in smooth muscle α-actin in the livers of rats fed a choline-deficient L-amino aciddefined-diet for 16 weeks, in which increased plasma ADAMTS13 activity was determined. Thus, increased plasma ADAMTS13 activity in cholestasis and steatohepatitis in rats may be due, at least in part, to enhanced ADAMTS13 production in the liver, suggesting a significant role of hepatic stellate cells in the regulation of plasma ADAMTS13 activity.


Sign in / Sign up

Export Citation Format

Share Document