scholarly journals Enantioseparation of 5,5′-Dibromo-2,2′-dichloro-3-selanyl-4,4′-bipyridines on Polysaccharide-Based Chiral Stationary Phases: Exploring Chalcogen Bonds in Liquid-Phase Chromatography

Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 221
Author(s):  
Paola Peluso ◽  
Alessandro Dessì ◽  
Roberto Dallocchio ◽  
Barbara Sechi ◽  
Carlo Gatti ◽  
...  

The chalcogen bond (ChB) is a noncovalent interaction based on electrophilic features of regions of electron charge density depletion (σ-holes) located on bound atoms of group VI. The σ-holes of sulfur and heavy chalcogen atoms (Se, Te) (donors) can interact through their positive electrostatic potential (V) with nucleophilic partners such as lone pairs, π-clouds, and anions (acceptors). In the last few years, promising applications of ChBs in catalysis, crystal engineering, molecular biology, and supramolecular chemistry have been reported. Recently, we explored the high-performance liquid chromatography (HPLC) enantioseparation of fluorinated 3-arylthio-4,4′-bipyridines containing sulfur atoms as ChB donors. Following this study, herein we describe the comparative enantioseparation of three 5,5′-dibromo-2,2′-dichloro-3-selanyl-4,4′-bipyridines on polysaccharide-based chiral stationary phases (CSPs) aiming to understand function and potentialities of selenium σ-holes in the enantiodiscrimination process. The impact of the chalcogen substituent on enantioseparation was explored by using sulfur and non-chalcogen derivatives as reference substances for comparison. Our investigation also focused on the function of the perfluorinated aromatic ring as a π-hole donor recognition site. Thermodynamic quantities associated with the enantioseparation were derived from van’t Hoff plots and local electron charge density of specific molecular regions of the interacting partners were inspected in terms of calculated V. On this basis, by correlating theoretical data and experimental results, the participation of ChBs and π-hole bonds in the enantiodiscrimination process was reasonably confirmed.

1991 ◽  
Vol 238 ◽  
Author(s):  
Genrich L. Krasko

ABSTRACTImpurities, such as H, P, S, B, etc, have a very low solubility in iron, and therefore prefer to segregate at the grain boundaries (GBs). In order to analyze the energetics of the impurities on the iron GB, the LMTO calculations were performed on a simple 8-atom supercel 1 emulating a typical (capped trigonal prism) GB environment. The so-called “environment-sensitive embedding energies” were calculated for H, B, C, N, O, Al, Si, P, and S, as a function of the electron charge density due to the host atoms at the impurity site. It was shown that, at the electron charge density typical of a GB, B and C have the lowest energy among the analyzed impurities, and thus would compete with them for the site on the GB, tending to push the other impurities off the GB. The above energies were then used in a modified Finnis-Sinclair embedded atom approach for calculating the equilibrium interplanar distances in the vicinity of a (111) σ3 tilt GB plane, both for the clean GB and that with an impurity. These distances were found to be oscillating, returning to the equilibrium spacing between (111) planes in bulk BCC iron by the 10th-12th plane off the GB plane. H, B, C, N and O actually dampen the deformation wave (making the oscillation amplitudes less than in the clean GB), while, Al, Si, P and S result in an increase of the oscillations. The effect of B, C, N and O may be interpreted as cohesion enhancement; this conclusion supports our earlier first-principles results [1] on B and C.


Sign in / Sign up

Export Citation Format

Share Document