scholarly journals Analyzing Kinase Similarity in Small Molecule and Protein Structural Space to Explore the Limits of Multi-Target Screening

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 629
Author(s):  
Denis Schmidt ◽  
Magdalena M. Scharf ◽  
Dominique Sydow ◽  
Eva Aßmann ◽  
Maria Martí-Solano ◽  
...  

While selective inhibition is one of the key assets for a small molecule drug, many diseases can only be tackled by simultaneous inhibition of several proteins. An example where achieving selectivity is especially challenging are ligands targeting human kinases. This difficulty arises from the high structural conservation of the kinase ATP binding sites, the area targeted by most inhibitors. We investigated the possibility to identify novel small molecule ligands with pre-defined binding profiles for a series of kinase targets and anti-targets by in silico docking. The candidate ligands originating from these calculations were assayed to determine their experimental binding profiles. Compared to previous studies, the acquired hit rates were low in this specific setup, which aimed at not only selecting multi-target kinase ligands, but also designing out binding to anti-targets. Specifically, only a single profiled substance could be verified as a sub-micromolar, dual-specific EGFR/ErbB2 ligand that indeed avoided its selected anti-target BRAF. We subsequently re-analyzed our target choice and in silico strategy based on these findings, with a particular emphasis on the hit rates that can be expected from a given target combination. To that end, we supplemented the structure-based docking calculations with bioinformatic considerations of binding pocket sequence and structure similarity as well as ligand-centric comparisons of kinases. Taken together, our results provide a multi-faceted picture of how pocket space can determine the success of docking in multi-target drug discovery efforts.

Author(s):  
Wopara, Iheanyichukwu ◽  
S. K. Mobisson ◽  
Egelege Aziemeola Pius ◽  
A. A. Uwakwe ◽  
M. O. Wegwu

Treatment of erectile dysfunction is associated with inhibition of Phosphodiesterase 5 enzyme. This study deals with the evaluation of Pterin-6-carboxylic acid inhibitory activity on phosphodiesterase 5 (PDB ID: 4OEW) using in silico docking studies. Pterin-6-carboxylic acid from Baphia nitida was isolated using GC-MS and docked into PDE5 active site. The docking result showed that pterin-6-carboxylic acid bind to the active site of phosphodiesterase 5 with the binding energy value of -7.1 and 2.05A° - 2.23A° when compared with other compound found in the plant. Moreso, docking analysis with the ligand identified specific residues such as: Ile 778, Phe 820, Gln 817, Ser 815 and Gln 775 within the binding pocket which played an important role in the ligand binding affinity to the protein. Result from our In silico studies hypothesized that pterin-6-carboxylic acid can be an inhibitory agent for PDE5 protein which could be a potential drug candidate for the treatment of erectile dysfunction.


2021 ◽  
Author(s):  
Sharif Anisuzzaman ◽  
Ivan M Geraskin ◽  
Muslum Ilgu ◽  
Lee Bendickson ◽  
George A Kraus ◽  
...  

The interaction of nucleic acids with their molecular targets often involves structural reorganization that may traverse a complex folding landscape. With the more recent recognition that many RNAs, both coding and noncoding, may regulate cellular activities by interacting with target molecules, it becomes increasingly important to understand the means by which nucleic acids interact with their targets and how drugs might be developed that can influence critical folding transitions. We have extensively investigated the interaction of the Spinach2 and Broccoli aptamers with a library of small molecule ligands modified by various extensions from the imido nitrogen of DFHBI (3,5-difluoro-4-hydroxybenzylidene imidazolinone) that reach out from the Spinach2 ligand binding pocket. Studies of the interaction of these compounds with the aptamers revealed that poly-fluorophenyl-modified ligands initiate a slow change in aptamer affinity that takes an extended time (half-life of ~40 min) to achieve. The change in affinity appears to involve an initial disruption of the entrance to the ligand binding pocket followed by a gradual lockdown for which the most likely driving force is an interaction of the gateway adenine with a nearby 2'OH group. These results suggest that poly-fluorophenyl modifications might increase the ability of small molecule drugs to disrupt local structure and promote RNA remodeling.


PLoS ONE ◽  
2010 ◽  
Vol 5 (5) ◽  
pp. e10479 ◽  
Author(s):  
Anne N. Shemon ◽  
Gary L. Heil ◽  
Alexey E. Granovsky ◽  
Mathew M. Clark ◽  
Dan McElheny ◽  
...  

2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Christian Berg ◽  
Katja Spiess ◽  
Hans R. Lüttichau ◽  
Mette M. Rosenkilde

2020 ◽  
Vol 12 (18) ◽  
pp. 1611-1631
Author(s):  
Shun Ying Quah ◽  
Michelle Siying Tan ◽  
Kok Lian Ho ◽  
Nizar Abdul Manan ◽  
Alemayehu Abebe Gorfe ◽  
...  

Background: Andrographolide and its benzylidene derivatives, SRJ09 and SRJ23, potentially bind oncogenic K-Ras to exert anticancer activity. Their molecular interactions with K-Ras oncoproteins that lead to effective biological activity are of major interest. Methods & results: In silico docking and molecular dynamics simulation were performed using Glide and Desmond, respectively; while saturation transfer difference NMR was performed using GDP-bound K-RasG12V. SRJ23 was found to bind strongly and selectively to K-RasG12V, by anchoring to a binding pocket (namely p2) principally via hydrogen bond and hydrophobic interactions. The saturation transfer difference NMR analysis revealed the proximity of protons of functional moieties in SRJ23 to K-RasG12V, suggesting positive binding. Conclusion: SRJ23 binds strongly and interacts stably with K-RasG12V to exhibit its inhibitory activity.


2021 ◽  
Vol 93 (6) ◽  
pp. 3072-3081
Author(s):  
Tengfei Xu ◽  
Haoduo Zhao ◽  
Mengjing Wang ◽  
Agnes Chow ◽  
Mingliang Fang

2020 ◽  
Author(s):  
Sahar Qazi ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapha ◽  
Khalid Raza ◽  
Ibrahim Alkali Allamin ◽  
...  

<p>The Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) is an infectious virus that causes mild to severe life-threatening upper respiratory tract infection. The virus emerged in Wuhan, China in 2019, and later spread across the globe. Its genome has been completely sequenced and based on the genomic information, the virus possessed 3C-Like Main Protease (3CLpro), an essential multifunctional enzyme that plays a vital role in the replication and transcription of the virus by cleaving polyprotein at eleven various sites to produce different non-structural proteins. This makes the protein an important target for drug design and discovery. Herein, we analyzed the interaction between the 3CLpro and potential inhibitory compounds identified from the extracts of <i>Zingiber offinale</i> and <i>Anacardium occidentale</i> using in silico docking and Molecular Dynamics (MD) Simulation. The crystal structure of SARS-CoV-2 main protease in complex with 02J (5-Methylisoxazole-3-carboxylic acid) and PEJ (composite ligand) (PDB Code: 6LU7,2.16Å) retrieved from Protein Data Bank (PDB) and subject to structure optimization and energy minimization. A total of twenty-nine compounds were obtained from the extracts of <i>Zingiber offinale </i>and the leaves of <i>Anacardium occidentale. </i>These compounds were screened for physicochemical (Lipinski rule of five, Veber rule, and Egan filter), <i>Pan</i>-Assay Interference Structure (PAINS), and pharmacokinetic properties to determine the Pharmaceutical Active Ingredients (PAIs). Of the 29 compounds, only nineteen (19) possessed drug-likeness properties with efficient oral bioavailability and less toxicity. These compounds subjected to molecular docking analysis to determine their binding energies with the 3CLpro. The result of the analysis indicated that the free binding energies of the compounds ranged between ˗5.08 and -10.24kcal/mol, better than the binding energies of 02j (-4.10kcal/mol) and PJE (-5.07kcal.mol). Six compounds (CID_99615 = -10.24kcal/mol, CID_3981360 = 9.75kcal/mol, CID_9910474 = -9.14kcal/mol, CID_11697907 = -9.10kcal/mol, CID_10503282 = -9.09kcal/mol and CID_620012 = -8.53kcal/mol) with good binding energies further selected and subjected to MD Simulation to determine the stability of the protein-ligand complex. The results of the analysis indicated that all the ligands form stable complexes with the protein, although, CID_9910474 and CID_10503282 had a better stability when compared to other selected phytochemicals (CID_99615, CID_3981360, CID_620012, and CID_11697907). </p>


Sign in / Sign up

Export Citation Format

Share Document