scholarly journals Biological Applications of Electron Paramagnetic Resonance Viscometry Using a 13C-Labeled Trityl Spin Probe

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2781
Author(s):  
Murugesan Velayutham ◽  
Martin Poncelet ◽  
Timothy D. Eubank ◽  
Benoit Driesschaert ◽  
Valery V. Khramtsov

Alterations in viscosity of biological fluids and tissues play an important role in health and diseases. It has been demonstrated that the electron paramagnetic resonance (EPR) spectrum of a 13C-labeled trityl spin probe (13C-dFT) is highly sensitive to the local viscosity of its microenvironment. In the present study, we demonstrate that X-band (9.5 GHz) EPR viscometry using 13C-dFT provides a simple tool to accurately measure the microviscosity of human blood in microliter volumes obtained from healthy volunteers. An application of low-field L-band (1.2 GHz) EPR with a penetration depth of 1–2 cm allowed for microviscosity measurements using 13C-dFT in the living tissues from isolated organs and in vivo in anesthetized mice. In summary, this study demonstrates that EPR viscometry using a 13C-dFT probe can be used to noninvasively and rapidly measure the microviscosity of blood and interstitial fluids in living tissues and potentially to evaluate this biophysical marker of microenvironment under various physiological and pathological conditions in preclinical and clinical settings.

1992 ◽  
Vol 140 (4) ◽  
pp. 447-452 ◽  
Author(s):  
Alex I. Smirnov ◽  
Helen A. Golovina ◽  
Olga E. Yakimchenko ◽  
Sergej I. Aksyonov ◽  
Yakob S. Lebedev

2020 ◽  
Vol 65 (6) ◽  
pp. 1142-1153
Author(s):  
В.Д. Микоян ◽  
◽  
Е.Н. Бургова ◽  
Р.Р. Бородулин ◽  
А.Ф. Ванин ◽  
...  

The number of mononitrosyl iron complexes with diethyldithiocarbamate, formed in the liver of mice in vivo and in vitro after intraperitoneal injection of binuclear dinitrosyl iron complexes with N-acetyl-L-cysteine or glutathione, S-nitrosoglutathione, sodium nitrite or the vasodilating drug Isoket® was assessed by electron paramagnetic resonance (EPR). The number of the said complexes, in contrast to the complexes, formed after nitrite or Isoket administration, the level of which sharply increased after treatment of liver preparations with a strong reducing agent - dithionite, did not change in the presence of dithionite. It was concluded that, in the first case, EPR-detectable mononitrosyl iron complexes with diethyldithiocarbamate in the absence and presence of dithionite appeared as a result of the reaction of NO formed from nitrite with Fe2+-dieth- yldithiocarbamate and Fe3+-diethyldithiocarbamate complexes, respectively. In the second case, mononitrosyl iron complexes with diethyldithiocarbamate appeared as a result of the transition of iron-mononitosyl fragments from ready-made iron-dinitrosyl groups of binuclear dinitrosyl complexes, which is three to four times higher than the content of the mononuclear form of these complexes in the tissue...


2005 ◽  
Vol 332 (2) ◽  
pp. 326-331 ◽  
Author(s):  
Takaaki Oteki ◽  
Sohji Nagase ◽  
Hidekatsu Yokoyama ◽  
Hiroaki Ohya ◽  
Takao Akatsuka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document