scholarly journals Efficient Synthesis of a New Family of 2,6-Disulfanyl-9-Selenabicyclo[3.3.1]Nonanes

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2849
Author(s):  
Maxim V. Musalov ◽  
Vladimir A. Potapov ◽  
Svetlana V. Amosova

The efficient synthesis of a new family of 2,6-disulfanyl-9-selenabicyclo[3.3.1]nonanes in high yields has been developed based on 9-selenabicyclo[3.3.1]nonane-2,6-dithiolate anion generated from bis-isothiouronium salt of 2,6-dibromo-9-selenabicyclo[3.3.1]nonane. The derivatives of 2,6-disulfanyl-9-selenabicyclo[3.3.1]nonane containing alkyl, allyl and benzyl moieties have been prepared in 90–99% yields by nucleophilic substitution of 9-selenabicyclo[3.3.1]nonane-2,6-dithiolate anion with alkyl, allyl and benzyl halides. The reaction of nucleophilic addition of 9-selenabicyclo[3.3.1]nonane-2,6-dithiolate anion to alkyl propiolates afforded 2,6-di(vinylsulfanyl)-9-selenabicyclo[3.3.1]nonanes. The conditions for regio- and stereoselective addition of 9-selenabicyclo[3.3.1]nonane-2,6-dithiolate anion to a triple bond of alkyl propiolates have been found. To date, not a single representative of 2,6-disulfanyl-9-selenabicyclo[3.3.1]nonanes has been described in the literature.

2020 ◽  
Vol 16 ◽  
pp. 515-523 ◽  
Author(s):  
Svetlana V Amosova ◽  
Andrey A Filippov ◽  
Nataliya A Makhaeva ◽  
Alexander I Albanov ◽  
Vladimir A Potapov

The reaction of 2-(bromomethyl)-1,3-thiaselenole with potassium selenocyanate proceeded via a rearrangement with ring expansion, leading to a six-membered 2,3-dihydro-1,4-thiaselenin-2-yl selenocyanate (kinetic product) which in turn underwent rearrangement with ring contraction to a 1,3-thiaselenol-2-ylmethyl selenocyanate (thermodynamic product). These rearrangements occurred by a nucleophilic attack of the selenocyanate anion at two different carbon atoms of the seleniranium intermediate. The efficient regioselective synthesis of alkyl, allyl, 2-propynyl, benzyl, 4-fluorobenzyl, and 2-pyridinylmethyl 1,3-thiaselenol-2-ylmethyl selenides was developed based on the generation of sodium 1,3-thiaselenol-2-ylmethylselenolate from 1,3-thiaselenol-2-ylmethyl selenocyanate or bis(1,3-thiaselenol-2-ylmethyl) diselenide followed by nucleophilic substitution reactions. Sodium 1,3-thiaselenol-2-ylmethylselenolate underwent nucleophilic addition to alkyl propiolates in a regio- and stereoselective manner affording 1,3-thiaselenol-2-ylmethyl vinyl selenides in high yields predominantly with Z-configuration. Not a single representative of the 1,3-thiaselenol-2-ylmethyl selenide scaffold has been previously described in the literature.


Synlett ◽  
2018 ◽  
Vol 29 (17) ◽  
pp. 2301-2305 ◽  
Author(s):  
F. Moghaddam ◽  
A. Moafi ◽  
Z. Zamani ◽  
M. Daneshfar

An efficient catalyst-free one-pot three-component reaction was developed for the synthesis of a new family of N- and S-containing spirocyclic compounds. Various derivatives of spirobenzimidazolidine containing an indole scaffold were synthesized for the first time in a modestly toxic solvent and under mild reaction conditions. The reaction times were of the order of several minutes, and all the products were obtained in moderate to high yields (overall yields 58–80%).


2017 ◽  
Vol 72 (10) ◽  
pp. 717-724 ◽  
Author(s):  
Jin-Wei Yuan ◽  
Ling-Bo Qu

AbstractIn this work, new derivatives of the β-sitosterol scaffolds containing 1,2,3-triazole are prepared by the reaction of β-sitosterol with aromatic alkynes via copper(I)-catalyzed azide-alkyne cycloaddition reactions under microwave irradiation. The reaction has several advantages including high yields, short reaction times, and a simple work-up procedure.


2020 ◽  
Vol 17 ◽  
Author(s):  
Kalyani K. ◽  
Srinivasa Reddy Kallam

Abstract:: An efficient synthesis of 2-substituted Quinazolin-4(3H)-ones has been developed from isatoic anhydride with various amidoximes by using recyclable polymer supported sulphonic acid catalyst. Excellent functional group compatibil-ity and high yields are the important features of this protocol.


1997 ◽  
Vol 62 (7) ◽  
pp. 1114-1127 ◽  
Author(s):  
Hubert Hřebabecký ◽  
Jan Balzarini ◽  
Antonín Holý

3'-Chloro and 3'-acetylsulfanyl derivatives of 1-(2-deoxy-4-C-hydroxymethyl-α-L-threo-pentofuranosyl)uracil were prepared by reaction of 2,3'-anhydro-1-{5'-O-benzoyl-4'-C-[(benzoyloxy)methyl]-2'-deoxy-α-L-erythro-pentofuranosyl}uracil (3) with hydrogen chloride and thioacetic acid, respectively. The reaction with hydrogen chloride gave a mixture of N-1 and N-3 substituted uracil derivatives 12 and 14. Reaction of 1-{3-O-benzoyl-4-C-[(benzoyloxy)methyl]-2-deoxy-α-L-threo-pentofuranosyl}uracil (7) with thionyl chloride and subsequent debenzoylation afforded 1-(4-C-chloromethyl-2-deoxy-β-D-erythro-pentofuranosyl)uracil (19). Nucleophilic substitution with lithium thioacetate, followed by deacylation, converted 1-{3-O-benzoyl-4-C-[(benzoyloxy)methyl]-2-deoxy-5-O-p-toluenesulfonyl-α-L-threo-pentofuranosyl}uracil (9) into 1-(2-deoxy-4-C-sulfanylmethyl-β-D-erythro-pentofuranosyl)uracil (21). The obtained thiols were oxidized with iodine or air to give 1,1'-[disulfandiylbis(2,3-dideoxy-4-hydroxymethyl-α-L-threo-pentofuranose-3,1-diyl]di(pyrimidine-2,4-(1H,3H)-dione) (17) and 1,1'-[disulfandiylbis(2,5-dideoxy-4-hydroxymethyl-α-L-threo-pentofuranose-5,1-diyl]di(pyrimidine-2,4(1H,3H)-dione) (22). Reaction of 1-{3-acetylsulfanyl-5-O-methanesulfonyl-4-C-[(benzoyloxy)methyl]-2,3-dideoxy-α-L-threo-pentofuranosyl)}uracil (24) with methanolic sodium methoxide afforded 1-(3,5-anhydro-2,3-dideoxy-4-C-hydroxymethyl-3-sulfanyl-α-L-threo-pentofuranosyl)uracil (25). The same reagent was used in the preparation of 1-(3,5-anhydro-2-deoxy-4-C-hydroxymethyl-α-L-threo-pentofuranosyl)uracil (26) from 1-{4-C-[(benzoyloxy)methyl]-2-deoxy-5-O-p-toluenesulfonyl-α-L-threo-pentofuranosyl}uracil (8). From the series of 4'-substituted 2'-deoxyuridine derivatives, synthesized in this study, solely the 4'-chloromethyl derivative 19 and the oxetane derivative 26 exhibited an appreciable activity against HIV-1 and HIV-2.


1984 ◽  
Vol 20 (3) ◽  
pp. 330-334
Author(s):  
S. N. Garmash ◽  
B. A. Priimenko ◽  
N. A. Klyuev ◽  
N. I. Romanenko ◽  
A. K. Sheinkman

Sign in / Sign up

Export Citation Format

Share Document