scholarly journals Photosynthetic Light-Harvesting (Antenna) Complexes—Structures and Functions

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3378
Author(s):  
Heiko Lokstein ◽  
Gernot Renger ◽  
Jan Götze

Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.

2015 ◽  
Vol 112 (52) ◽  
pp. 15880-15885 ◽  
Author(s):  
Kun Tang ◽  
Wen-Long Ding ◽  
Astrid Höppner ◽  
Cheng Zhao ◽  
Lun Zhang ◽  
...  

Photosynthesis relies on energy transfer from light-harvesting complexes to reaction centers. Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, attach to the membrane via the multidomain core-membrane linker, LCM. The chromophore domain of LCM forms a bottleneck for funneling the harvested energy either productively to reaction centers or, in case of light overload, to quenchers like orange carotenoid protein (OCP) that prevent photodamage. The crystal structure of the solubly modified chromophore domain from Nostoc sp. PCC7120 was resolved at 2.2 Å. Although its protein fold is similar to the protein folds of phycobiliproteins, the phycocyanobilin (PCB) chromophore adopts ZZZssa geometry, which is unknown among phycobiliproteins but characteristic for sensory photoreceptors (phytochromes and cyanobacteriochromes). However, chromophore photoisomerization is inhibited in LCM by tight packing. The ZZZssa geometry of the chromophore and π-π stacking with a neighboring Trp account for the functionally relevant extreme spectral red shift of LCM. Exciton coupling is excluded by the large distance between two PCBs in a homodimer and by preservation of the spectral features in monomers. The structure also indicates a distinct flexibility that could be involved in quenching. The conclusions from the crystal structure are supported by femtosecond transient absorption spectra in solution.


2002 ◽  
Vol 35 (1) ◽  
pp. 1-62 ◽  
Author(s):  
Xiche Hu ◽  
Thorsten Ritz ◽  
Ana Damjanović ◽  
Felix Autenrieth ◽  
Klaus Schulten

1. Introduction 22. Structure of the bacterial PSU 52.1 Organization of the bacterial PSU 52.2 The crystal structure of the RC 92.3 The crystal structures of LH-II 112.4 Bacteriochlorophyll pairs in LH-II and the RC 132.5 Models of LH-I and the LH-I-RC complex 152.6 Model for the PSU 173. Excitation transfer in the PSU 183.1 Electronic excitations of BChls 22 3.1.1 Individual BChls 22 3.1.2 Rings of BChls 22 3.1.2.1 Exciton states 22 3.1.3 Effective Hamiltonian 24 3.1.4 Optical properties 25 3.1.5 The effect of disorder 263.2 Theory of excitation transfer 29 3.2.1 General theory 29 3.2.2 Mechanisms of excitation transfer 32 3.2.3 Approximation for long-range transfer 34 3.2.4 Transfer to exciton states 353.3 Rates for transfer processes in the PSU 37 3.3.1 Car→BChl transfer 37 3.3.1.1 Mechanism of Car→BChl transfer 39 3.3.1.2 Pathways of Car→BChl transfer 40 3.3.2 Efficiency of Car→BChl transfer 40 3.3.3 B800-B850 transfer 44 3.3.4 LH-II→LH-II transfer 44 3.3.5 LH-II→LH-I transfer 45 3.3.6 LH-I→RC transfer 45 3.3.7 Excitation migration in the PSU 46 3.3.8 Genetic basis of PSU assembly 494. Concluding remarks 535. Acknowledgments 556. References 55Life as we know it today exists largely because of photosynthesis, the process through which light energy is converted into chemical energy by plants, algae, and photosynthetic bacteria (Priestley, 1772; Barnes, 1893; Wurmser, 1925; Van Niel, 1941; Clayton & Sistrom, 1978; Blankenship et al. 1995; Ort & Yocum, 1996). Historically, photosynthetic organisms are grouped into two classes. When photosynthesis is carried out in the presence of air it is called oxygenic photosynthesis (Ort & Yocum, 1996). Otherwise, it is anoxygenic (Blankenship et al. 1995). Higher plants, algae and cyanobacteria perform oxygenic photosynthesis, which involves reduction of carbon dioxide to carbohydrate and oxidation of water to produce molecular oxygen. Some photosynthetic bacteria, such as purple bacteria, carry out anoxygenic photosynthesis that involves oxidation of molecules other than water. In spite of these differences, the general principles of energy transduction are the same in anoxygenic and oxygenic photosynthesis (Van Niel, 1931, 1941; Stanier, 1961; Wraight, 1982; Gest, 1993). The primary processes of photosynthesis involve absorption of photons by light-harvesting complexes (LHs), transfer of excitation energy from LHs to the photosynthetic reaction centers (RCs), and the primary charge separation across the photosynthetic membrane (Sauer, 1975; Knox, 1977; Fleming & van Grondelle, 1994; van Grondelle et al. 1994). In this article, we will focus on the anoxygenic photosynthetic process in purple bacteria, since its photosynthetic system is the most studied and best characterized during the past 50 years.


2020 ◽  
Author(s):  
Kelath Murali Manoj ◽  
Afsal Manekkathodi

The prevailing understanding on photolytic photophosphorylation, the light reaction of oxygenic photosynthesis, considers the vast majority of the diverse pigments, chlorophyll binding proteins (CBPs) and light harvesting complexes (LHCs) as photon-energy relaying facets; only the two photosystems’ (PS) reaction centers’ chlorophyll a couplets are deemed to serve as photo-excitable electron emitters. Highlighting the historical perspectives involved, we present reasons why this conventional perception is unmet by theoretical foundations, unsupported by molecular awareness on the various pigments and unverified by physiological data available on chloroplasts. Further, we propose a simple diffusible reactive oxygen species (DROS)-based mechanism for correlating the functions of various light harvesting LHCs and CBPs with the reaction centers of PS I & II.


2020 ◽  
Vol 295 (51) ◽  
pp. 17816-17826
Author(s):  
Mahendra K. Shukla ◽  
Akimasa Watanabe ◽  
Sam Wilson ◽  
Vasco Giovagnetti ◽  
Ece Imam Moustafa ◽  
...  

Nonphotochemical quenching (NPQ) is a mechanism of regulating light harvesting that protects the photosynthetic apparatus from photodamage by dissipating excess absorbed excitation energy as heat. In higher plants, the major light-harvesting antenna complex (LHCII) of photosystem (PS) II is directly involved in NPQ. The aggregation of LHCII is proposed to be involved in quenching. However, the lack of success in isolating native LHCII aggregates has limited the direct interrogation of this process. The isolation of LHCII in its native state from thylakoid membranes has been problematic because of the use of detergent, which tends to dissociate loosely bound proteins, and the abundance of pigment–protein complexes (e.g. PSI and PSII) embedded in the photosynthetic membrane, which hinders the preparation of aggregated LHCII. Here, we used a novel purification method employing detergent and amphipols to entrap LHCII in its natural states. To enrich the photosynthetic membrane with the major LHCII, we used Arabidopsis thaliana plants lacking the PSII minor antenna complexes (NoM), treated with lincomycin to inhibit the synthesis of PSI and PSII core proteins. Using sucrose density gradients, we succeeded in isolating the trimeric and aggregated forms of LHCII antenna. Violaxanthin- and zeaxanthin-enriched complexes were investigated in dark-adapted, NPQ, and dark recovery states. Zeaxanthin-enriched antenna complexes showed the greatest amount of aggregated LHCII. Notably, the amount of aggregated LHCII decreased upon relaxation of NPQ. Employing this novel preparative method, we obtained a direct evidence for the role of in vivo LHCII aggregation in NPQ.


2012 ◽  
Vol 1445 ◽  
Author(s):  
Woo-Jin An ◽  
Jessica Co-Reyes ◽  
Vivek B. Shah ◽  
Wei-Ning Wang ◽  
Gregory S. Orf ◽  
...  

ABSTRACTAll photosynthetic organisms contain light-harvesting antenna complexes and electron transfer complexes called reaction centers. Some photosynthetic bacteria contain large (~100 MDa) peripheral antenna complexes known as chlorosomes. Chlorosomes lose their reaction center when they are extracted from organisms. Lead sulfide (PbS) quantum dots (QDs) were used for artificial reaction centers. Successive ionic layer adsorption and reaction (SILAR) allows different sizes of PbS QDs with different cycles to be easily deposited onto the nanostructured columnar titanium dioxide (TiO2) film with single crystal. Chlorosomes were sequentially deposited onto the PbS QDs surface by electrospray. Compared to the typical PbS QD sensitized solar cells, overall energy conversion efficiency increased with the Förster resonance energy transfer (FRET) effect between PbS QDs and chlorosomes.


Langmuir ◽  
2011 ◽  
Vol 27 (16) ◽  
pp. 10282-10294 ◽  
Author(s):  
Mart-Jan den Hollander ◽  
J. Gerhard Magis ◽  
Philipp Fuchsenberger ◽  
Thijs J. Aartsma ◽  
Michael R. Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document