Structure and functional organization of light-harvesting complexes and photochemical reaction centers in membranes of phototrophic bacteria.

1985 ◽  
Vol 49 (1) ◽  
pp. 59-70 ◽  
Author(s):  
G Drews
2015 ◽  
Vol 112 (52) ◽  
pp. 15880-15885 ◽  
Author(s):  
Kun Tang ◽  
Wen-Long Ding ◽  
Astrid Höppner ◽  
Cheng Zhao ◽  
Lun Zhang ◽  
...  

Photosynthesis relies on energy transfer from light-harvesting complexes to reaction centers. Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, attach to the membrane via the multidomain core-membrane linker, LCM. The chromophore domain of LCM forms a bottleneck for funneling the harvested energy either productively to reaction centers or, in case of light overload, to quenchers like orange carotenoid protein (OCP) that prevent photodamage. The crystal structure of the solubly modified chromophore domain from Nostoc sp. PCC7120 was resolved at 2.2 Å. Although its protein fold is similar to the protein folds of phycobiliproteins, the phycocyanobilin (PCB) chromophore adopts ZZZssa geometry, which is unknown among phycobiliproteins but characteristic for sensory photoreceptors (phytochromes and cyanobacteriochromes). However, chromophore photoisomerization is inhibited in LCM by tight packing. The ZZZssa geometry of the chromophore and π-π stacking with a neighboring Trp account for the functionally relevant extreme spectral red shift of LCM. Exciton coupling is excluded by the large distance between two PCBs in a homodimer and by preservation of the spectral features in monomers. The structure also indicates a distinct flexibility that could be involved in quenching. The conclusions from the crystal structure are supported by femtosecond transient absorption spectra in solution.


2020 ◽  
Author(s):  
Kelath Murali Manoj ◽  
Afsal Manekkathodi

The prevailing understanding on photolytic photophosphorylation, the light reaction of oxygenic photosynthesis, considers the vast majority of the diverse pigments, chlorophyll binding proteins (CBPs) and light harvesting complexes (LHCs) as photon-energy relaying facets; only the two photosystems’ (PS) reaction centers’ chlorophyll a couplets are deemed to serve as photo-excitable electron emitters. Highlighting the historical perspectives involved, we present reasons why this conventional perception is unmet by theoretical foundations, unsupported by molecular awareness on the various pigments and unverified by physiological data available on chloroplasts. Further, we propose a simple diffusible reactive oxygen species (DROS)-based mechanism for correlating the functions of various light harvesting LHCs and CBPs with the reaction centers of PS I & II.


Langmuir ◽  
2011 ◽  
Vol 27 (16) ◽  
pp. 10282-10294 ◽  
Author(s):  
Mart-Jan den Hollander ◽  
J. Gerhard Magis ◽  
Philipp Fuchsenberger ◽  
Thijs J. Aartsma ◽  
Michael R. Jones ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3378
Author(s):  
Heiko Lokstein ◽  
Gernot Renger ◽  
Jan Götze

Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.


1996 ◽  
Vol 51 (11-12) ◽  
pp. 763-771 ◽  
Author(s):  
Andrey A Moskalenko ◽  
Navassard V Karapetyan

Besides the light-harvesting and protecting role, carotenoids are also instrumental as structural components for the assembly of light-harvesting complexes in purple bacteria and green plants, as well as for the formation of photosystem II complex. Carotenoids stabilize those pigm ent-protein complexes, but have no effect on the form ation of the reaction centers of purple bacteria and photosystem I of plants.


Sign in / Sign up

Export Citation Format

Share Document